dc.creatorKochloukova, DH
dc.creatorZalesskii, P
dc.date2005
dc.dateAPR
dc.date2014-11-15T15:24:17Z
dc.date2015-11-26T16:11:50Z
dc.date2014-11-15T15:24:17Z
dc.date2015-11-26T16:11:50Z
dc.date.accessioned2018-03-28T23:00:20Z
dc.date.available2018-03-28T23:00:20Z
dc.identifierMonatshefte Fur Mathematik. Springer Wien, v. 144, n. 4, n. 285, n. 296, 2005.
dc.identifier0026-9255
dc.identifierWOS:000229477300003
dc.identifier10.1007/s00605-004-0269-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/69625
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/69625
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/69625
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1267184
dc.descriptionLet G be a finitely presented pro-L group with discrete relations. We prove that the kernel of an epimorphism of G to Z(l) is topologically finitely generated if G does not contain a free pro-L group of rank 2. In the case of pro-p groups the result is due to J. Wilson and E. Zelmanov and does not require that the relations are discrete ([15], [17]). For a prop group G of type FP. we define a homological invariant Sigma(m)(G) and prove that this invariant determines when a subgroup H of G that contains the commutator subgroup G' is itself of type FPm. This generalises work of J. King for Sigma(1)(G) in the case when G is metabelian [9]. Both parts of the paper are linked via two conjectures for finitely presented pro-p groups G without free non-cyclic prop subgroups. The conjectures suggest that the above conditions on G impose some restrictions on Sigma(1)(G) and on the automorphism group of G.
dc.description144
dc.description4
dc.description285
dc.description296
dc.languageen
dc.publisherSpringer Wien
dc.publisherWien
dc.publisherAustria
dc.relationMonatshefte Fur Mathematik
dc.relationMon.heft. Math.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectpro-l groups
dc.subjectpro-p groups
dc.subjecthomological type FPm
dc.subjectfinite presentability
dc.subjectGeometric Invariant
dc.subjectDiscrete-groups
dc.subjectLie-algebras
dc.titleHomological invariants for pro-p groups and some finitely presented pro-l groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución