Actas de congresos
Existence And Stability Of Ground-state Solutions Of A Schrödinger-kdv System
Registro en:
Royal Society Of Edinburgh - Proceedings A. , v. 133, n. 5, p. 987 - 1029, 2003.
3082105
2-s2.0-0344981531
Autor
Albert J.
Pava J.A.
Institución
Resumen
We consider the coupled Schrödinger-Korteweg-de Vries system i(u t + c1ux) + δ1uxx = αuv, vt + c2vx + δ 2vxxx + γ(v2)x = β(|u|2)x, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Ground states of the system are, by definition, minimizers of the energy functional subject to constraints on conserved functionals associated with symmetries of the system. In particular, ground states have a simple time dependence because they propagate via those symmetries. For a range of values of the parameters α, β, γ, δi, ci, we prove the existence and stability of a two-parameter family of ground states associated with a two-parameter family of symmetries. 133 5 987 1029 Albert, J., Concentration compactness and the stability of solitary-wave solutions to nonlocal equations (1999) Applied Analysis, pp. 1-29. , (ed. J. Goldstein et al.) (Providence, RI: American Mathematical Society) Albert, J., Linares, F., Stability and symmetry of solitary-wave solutions to systems modeling interactions of long waves (2000) J. Math. Pures Appl., 79, pp. 195-226 Albert, J., Bona, J., Saut, J.-C., Model equations for waves in stratified fluids (1997) Proc. R. Soc. Lond. A, 453, pp. 1233-1260 Angulo Pava, J., Variational Method, Convexity and the Stability of Solitary-wave Solutions for Some Equations of Short and Long Dispersive Waves, , Preprint Appert, K., Vaclavik, J., Dynamics of coupled solitons (1977) Phys. Fluids, 20, pp. 1845-1849 Bekiranov, D., Ogawa, T., Ponce, G., On the well-posedness of Benney's interaction equation of short and long waves (1996) Adv. Diff. Eqns, 1, pp. 919-937 Bekiranov, D., Ogawa, T., Ponce, G., Weak solvability and well-posedness of a coupled Schrödinger-Korteweg-de Vries equation for capillary-gravity wave interactions (1997) Proc. Am. Math. Soc., 125, pp. 2907-2919 Bekiranov, D., Ogawa, T., Ponce, G., Interaction equation for short and long dispersive waves (1998) J. Funct. Analysis, 158, pp. 357-388 Benilov, E., Burtsev, S., To the integrability of the equations describing the Langmuir-wave-ion-acoustic-wave interaction (1983) Phys. Lett. A, 98, pp. 256-258 Benney, D., A general theory for interactions between long and short waves (1977) Stud. Appl. Math., 56, pp. 81-94 Berestycki, H., Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions (1983) Arch. Ration. Mech. Analysis, 82, pp. 347-375 Cazenave, T., (1996) An Introduction to Nonlinear Schrödinger Equations, 26. , Textos de Métodos Matemáticos, 3rd edn (Universidade Federal do Rio de Janeiro) Cazenave, T., Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations (1982) Commun. Math. Phys., 85, pp. 549-561 Chen, L., Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation (1999) J. PDEs, 12, pp. 11-25 Chen, H., Bona, J., Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations (1998) Adv. Diff. Eqns, 3, pp. 51-84 Djordevic, V., Redekopp, L., On two-dimensional packets of capillary-gravity waves (1977) J. Fluid Mech., 79, pp. 703-714 Funakoshi, M., Oikawa, M., The resonant interaction between a long internal gravity wave and a surface gravity wave packet (1983) J. Phys. Soc. Jpn, 52, pp. 1982-1995 Ginibre, J., Tsutsumi, Y., Velo, G., On the Cauchy problem for the Zakharov system (1997) J. Funct. Analysis, 151, pp. 384-436 Grillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry. II (1990) J. Funct. Analysis, 94, pp. 308-348 Grimshaw, R., The modulation of an internal gravity-wave packet, and the resonance with the mean motion (1977) Stud. Appl. Math., 56, pp. 241-266 Guo, B., Miao, C., Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations (1999) Acta Math., 15, pp. 215-224 Karpman, V., On the dynamics of sonic-Langmuir solitons (1975) Physica Scr., 11, pp. 263-265 Kawahara, T., Sugimoto, N., Kakutani, T., Nonlinear interaction between short and long capillary-gravity waves (1975) J. Phys. Soc. Jpn, 39, pp. 1379-1386 Laurençot, P., On a nonlinear Schrödinger equation arising in the theory of water waves (1995) Nonlin. Analysis, 24, pp. 509-527 Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 1, pp. 109-145 Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 2 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 4, pp. 223-283 Luenberger, D., (1969) Optimization by Vector Space Methods, , Wiley Ma, Y.-C., The complete solution of the long-wave-short-wave resonance equations (1978) Stud. Appl. Math., 59, pp. 201-221 Ma, Y.-C., Redekopp, L., Some solutions pertaining to the resonant interaction of long and short waves (1979) Phys. Fluids, 22, pp. 1872-1876 Makhankov, V., On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation (1974) Phys. Lett. A, 50, pp. 42-44 Morse, P., Feshbach, H., (1953) Methods of Theoretical Physics, 1. , McGraw-Hill Nishikawa, K., Hojo, H., Mima, K., Ikezi, H., Coupled nonlinear electron-plasma and ion-acoustic waves (1974) Phys. Rev. Lett., 33, pp. 148-151 Ohta, M., Stability of solitary waves for the Zakharov equations (1995) Dynamical Systems and Applications, pp. 563-571. , (ed. R. Agarwal) (World Scientific) Tsutsumi, M., Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation (1993) Math. Sci. Appl., 2, pp. 513-528 Tsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for the long wave-short wave resonance equations (1994) Nonlin. Analysis, 22, pp. 155-171 Tsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for Benney's first equations of long wave/short wave interaction (1994) Funkcial. Ekvac., 37, pp. 289-316 Yajima, N., Oikawa, M., Formation and interaction of sonic-Langmuir solitons: Inverse scattering method (1976) Prog. Theor. Phys., 56, pp. 1719-1739 Yajima, N., Satsuma, J., Soliton solutions in a diatomic lattice system (1979) Prog. Theor. Phys., 62, pp. 370-378