dc.creatorAlbert J.
dc.creatorPava J.A.
dc.date2003
dc.date2015-06-30T17:29:12Z
dc.date2015-11-26T15:41:05Z
dc.date2015-06-30T17:29:12Z
dc.date2015-11-26T15:41:05Z
dc.date.accessioned2018-03-28T22:49:33Z
dc.date.available2018-03-28T22:49:33Z
dc.identifier
dc.identifierRoyal Society Of Edinburgh - Proceedings A. , v. 133, n. 5, p. 987 - 1029, 2003.
dc.identifier3082105
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0344981531&partnerID=40&md5=f41ce310264fb1265009e2df69968b6c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102238
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102238
dc.identifier2-s2.0-0344981531
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264530
dc.descriptionWe consider the coupled Schrödinger-Korteweg-de Vries system i(u t + c1ux) + δ1uxx = αuv, vt + c2vx + δ 2vxxx + γ(v2)x = β(|u|2)x, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Ground states of the system are, by definition, minimizers of the energy functional subject to constraints on conserved functionals associated with symmetries of the system. In particular, ground states have a simple time dependence because they propagate via those symmetries. For a range of values of the parameters α, β, γ, δi, ci, we prove the existence and stability of a two-parameter family of ground states associated with a two-parameter family of symmetries.
dc.description133
dc.description5
dc.description987
dc.description1029
dc.descriptionAlbert, J., Concentration compactness and the stability of solitary-wave solutions to nonlocal equations (1999) Applied Analysis, pp. 1-29. , (ed. J. Goldstein et al.) (Providence, RI: American Mathematical Society)
dc.descriptionAlbert, J., Linares, F., Stability and symmetry of solitary-wave solutions to systems modeling interactions of long waves (2000) J. Math. Pures Appl., 79, pp. 195-226
dc.descriptionAlbert, J., Bona, J., Saut, J.-C., Model equations for waves in stratified fluids (1997) Proc. R. Soc. Lond. A, 453, pp. 1233-1260
dc.descriptionAngulo Pava, J., Variational Method, Convexity and the Stability of Solitary-wave Solutions for Some Equations of Short and Long Dispersive Waves, , Preprint
dc.descriptionAppert, K., Vaclavik, J., Dynamics of coupled solitons (1977) Phys. Fluids, 20, pp. 1845-1849
dc.descriptionBekiranov, D., Ogawa, T., Ponce, G., On the well-posedness of Benney's interaction equation of short and long waves (1996) Adv. Diff. Eqns, 1, pp. 919-937
dc.descriptionBekiranov, D., Ogawa, T., Ponce, G., Weak solvability and well-posedness of a coupled Schrödinger-Korteweg-de Vries equation for capillary-gravity wave interactions (1997) Proc. Am. Math. Soc., 125, pp. 2907-2919
dc.descriptionBekiranov, D., Ogawa, T., Ponce, G., Interaction equation for short and long dispersive waves (1998) J. Funct. Analysis, 158, pp. 357-388
dc.descriptionBenilov, E., Burtsev, S., To the integrability of the equations describing the Langmuir-wave-ion-acoustic-wave interaction (1983) Phys. Lett. A, 98, pp. 256-258
dc.descriptionBenney, D., A general theory for interactions between long and short waves (1977) Stud. Appl. Math., 56, pp. 81-94
dc.descriptionBerestycki, H., Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions (1983) Arch. Ration. Mech. Analysis, 82, pp. 347-375
dc.descriptionCazenave, T., (1996) An Introduction to Nonlinear Schrödinger Equations, 26. , Textos de Métodos Matemáticos, 3rd edn (Universidade Federal do Rio de Janeiro)
dc.descriptionCazenave, T., Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations (1982) Commun. Math. Phys., 85, pp. 549-561
dc.descriptionChen, L., Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation (1999) J. PDEs, 12, pp. 11-25
dc.descriptionChen, H., Bona, J., Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations (1998) Adv. Diff. Eqns, 3, pp. 51-84
dc.descriptionDjordevic, V., Redekopp, L., On two-dimensional packets of capillary-gravity waves (1977) J. Fluid Mech., 79, pp. 703-714
dc.descriptionFunakoshi, M., Oikawa, M., The resonant interaction between a long internal gravity wave and a surface gravity wave packet (1983) J. Phys. Soc. Jpn, 52, pp. 1982-1995
dc.descriptionGinibre, J., Tsutsumi, Y., Velo, G., On the Cauchy problem for the Zakharov system (1997) J. Funct. Analysis, 151, pp. 384-436
dc.descriptionGrillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry. II (1990) J. Funct. Analysis, 94, pp. 308-348
dc.descriptionGrimshaw, R., The modulation of an internal gravity-wave packet, and the resonance with the mean motion (1977) Stud. Appl. Math., 56, pp. 241-266
dc.descriptionGuo, B., Miao, C., Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations (1999) Acta Math., 15, pp. 215-224
dc.descriptionKarpman, V., On the dynamics of sonic-Langmuir solitons (1975) Physica Scr., 11, pp. 263-265
dc.descriptionKawahara, T., Sugimoto, N., Kakutani, T., Nonlinear interaction between short and long capillary-gravity waves (1975) J. Phys. Soc. Jpn, 39, pp. 1379-1386
dc.descriptionLaurençot, P., On a nonlinear Schrödinger equation arising in the theory of water waves (1995) Nonlin. Analysis, 24, pp. 509-527
dc.descriptionLions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 1, pp. 109-145
dc.descriptionLions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 2 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 4, pp. 223-283
dc.descriptionLuenberger, D., (1969) Optimization by Vector Space Methods, , Wiley
dc.descriptionMa, Y.-C., The complete solution of the long-wave-short-wave resonance equations (1978) Stud. Appl. Math., 59, pp. 201-221
dc.descriptionMa, Y.-C., Redekopp, L., Some solutions pertaining to the resonant interaction of long and short waves (1979) Phys. Fluids, 22, pp. 1872-1876
dc.descriptionMakhankov, V., On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation (1974) Phys. Lett. A, 50, pp. 42-44
dc.descriptionMorse, P., Feshbach, H., (1953) Methods of Theoretical Physics, 1. , McGraw-Hill
dc.descriptionNishikawa, K., Hojo, H., Mima, K., Ikezi, H., Coupled nonlinear electron-plasma and ion-acoustic waves (1974) Phys. Rev. Lett., 33, pp. 148-151
dc.descriptionOhta, M., Stability of solitary waves for the Zakharov equations (1995) Dynamical Systems and Applications, pp. 563-571. , (ed. R. Agarwal) (World Scientific)
dc.descriptionTsutsumi, M., Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation (1993) Math. Sci. Appl., 2, pp. 513-528
dc.descriptionTsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for the long wave-short wave resonance equations (1994) Nonlin. Analysis, 22, pp. 155-171
dc.descriptionTsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for Benney's first equations of long wave/short wave interaction (1994) Funkcial. Ekvac., 37, pp. 289-316
dc.descriptionYajima, N., Oikawa, M., Formation and interaction of sonic-Langmuir solitons: Inverse scattering method (1976) Prog. Theor. Phys., 56, pp. 1719-1739
dc.descriptionYajima, N., Satsuma, J., Soliton solutions in a diatomic lattice system (1979) Prog. Theor. Phys., 62, pp. 370-378
dc.languageen
dc.publisher
dc.relationRoyal Society of Edinburgh - Proceedings A
dc.rightsfechado
dc.sourceScopus
dc.titleExistence And Stability Of Ground-state Solutions Of A Schrödinger-kdv System
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución