dc.creator | Albert J. | |
dc.creator | Pava J.A. | |
dc.date | 2003 | |
dc.date | 2015-06-30T17:29:12Z | |
dc.date | 2015-11-26T15:41:05Z | |
dc.date | 2015-06-30T17:29:12Z | |
dc.date | 2015-11-26T15:41:05Z | |
dc.date.accessioned | 2018-03-28T22:49:33Z | |
dc.date.available | 2018-03-28T22:49:33Z | |
dc.identifier | | |
dc.identifier | Royal Society Of Edinburgh - Proceedings A. , v. 133, n. 5, p. 987 - 1029, 2003. | |
dc.identifier | 3082105 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0344981531&partnerID=40&md5=f41ce310264fb1265009e2df69968b6c | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/102238 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/102238 | |
dc.identifier | 2-s2.0-0344981531 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1264530 | |
dc.description | We consider the coupled Schrödinger-Korteweg-de Vries system i(u t + c1ux) + δ1uxx = αuv, vt + c2vx + δ 2vxxx + γ(v2)x = β(|u|2)x, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Ground states of the system are, by definition, minimizers of the energy functional subject to constraints on conserved functionals associated with symmetries of the system. In particular, ground states have a simple time dependence because they propagate via those symmetries. For a range of values of the parameters α, β, γ, δi, ci, we prove the existence and stability of a two-parameter family of ground states associated with a two-parameter family of symmetries. | |
dc.description | 133 | |
dc.description | 5 | |
dc.description | 987 | |
dc.description | 1029 | |
dc.description | Albert, J., Concentration compactness and the stability of solitary-wave solutions to nonlocal equations (1999) Applied Analysis, pp. 1-29. , (ed. J. Goldstein et al.) (Providence, RI: American Mathematical Society) | |
dc.description | Albert, J., Linares, F., Stability and symmetry of solitary-wave solutions to systems modeling interactions of long waves (2000) J. Math. Pures Appl., 79, pp. 195-226 | |
dc.description | Albert, J., Bona, J., Saut, J.-C., Model equations for waves in stratified fluids (1997) Proc. R. Soc. Lond. A, 453, pp. 1233-1260 | |
dc.description | Angulo Pava, J., Variational Method, Convexity and the Stability of Solitary-wave Solutions for Some Equations of Short and Long Dispersive Waves, , Preprint | |
dc.description | Appert, K., Vaclavik, J., Dynamics of coupled solitons (1977) Phys. Fluids, 20, pp. 1845-1849 | |
dc.description | Bekiranov, D., Ogawa, T., Ponce, G., On the well-posedness of Benney's interaction equation of short and long waves (1996) Adv. Diff. Eqns, 1, pp. 919-937 | |
dc.description | Bekiranov, D., Ogawa, T., Ponce, G., Weak solvability and well-posedness of a coupled Schrödinger-Korteweg-de Vries equation for capillary-gravity wave interactions (1997) Proc. Am. Math. Soc., 125, pp. 2907-2919 | |
dc.description | Bekiranov, D., Ogawa, T., Ponce, G., Interaction equation for short and long dispersive waves (1998) J. Funct. Analysis, 158, pp. 357-388 | |
dc.description | Benilov, E., Burtsev, S., To the integrability of the equations describing the Langmuir-wave-ion-acoustic-wave interaction (1983) Phys. Lett. A, 98, pp. 256-258 | |
dc.description | Benney, D., A general theory for interactions between long and short waves (1977) Stud. Appl. Math., 56, pp. 81-94 | |
dc.description | Berestycki, H., Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions (1983) Arch. Ration. Mech. Analysis, 82, pp. 347-375 | |
dc.description | Cazenave, T., (1996) An Introduction to Nonlinear Schrödinger Equations, 26. , Textos de Métodos Matemáticos, 3rd edn (Universidade Federal do Rio de Janeiro) | |
dc.description | Cazenave, T., Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations (1982) Commun. Math. Phys., 85, pp. 549-561 | |
dc.description | Chen, L., Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation (1999) J. PDEs, 12, pp. 11-25 | |
dc.description | Chen, H., Bona, J., Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations (1998) Adv. Diff. Eqns, 3, pp. 51-84 | |
dc.description | Djordevic, V., Redekopp, L., On two-dimensional packets of capillary-gravity waves (1977) J. Fluid Mech., 79, pp. 703-714 | |
dc.description | Funakoshi, M., Oikawa, M., The resonant interaction between a long internal gravity wave and a surface gravity wave packet (1983) J. Phys. Soc. Jpn, 52, pp. 1982-1995 | |
dc.description | Ginibre, J., Tsutsumi, Y., Velo, G., On the Cauchy problem for the Zakharov system (1997) J. Funct. Analysis, 151, pp. 384-436 | |
dc.description | Grillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry. II (1990) J. Funct. Analysis, 94, pp. 308-348 | |
dc.description | Grimshaw, R., The modulation of an internal gravity-wave packet, and the resonance with the mean motion (1977) Stud. Appl. Math., 56, pp. 241-266 | |
dc.description | Guo, B., Miao, C., Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations (1999) Acta Math., 15, pp. 215-224 | |
dc.description | Karpman, V., On the dynamics of sonic-Langmuir solitons (1975) Physica Scr., 11, pp. 263-265 | |
dc.description | Kawahara, T., Sugimoto, N., Kakutani, T., Nonlinear interaction between short and long capillary-gravity waves (1975) J. Phys. Soc. Jpn, 39, pp. 1379-1386 | |
dc.description | Laurençot, P., On a nonlinear Schrödinger equation arising in the theory of water waves (1995) Nonlin. Analysis, 24, pp. 509-527 | |
dc.description | Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 1, pp. 109-145 | |
dc.description | Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. Part 2 (1984) Annls Inst. H. Poincaré Analyse Non Linéaire, 4, pp. 223-283 | |
dc.description | Luenberger, D., (1969) Optimization by Vector Space Methods, , Wiley | |
dc.description | Ma, Y.-C., The complete solution of the long-wave-short-wave resonance equations (1978) Stud. Appl. Math., 59, pp. 201-221 | |
dc.description | Ma, Y.-C., Redekopp, L., Some solutions pertaining to the resonant interaction of long and short waves (1979) Phys. Fluids, 22, pp. 1872-1876 | |
dc.description | Makhankov, V., On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation (1974) Phys. Lett. A, 50, pp. 42-44 | |
dc.description | Morse, P., Feshbach, H., (1953) Methods of Theoretical Physics, 1. , McGraw-Hill | |
dc.description | Nishikawa, K., Hojo, H., Mima, K., Ikezi, H., Coupled nonlinear electron-plasma and ion-acoustic waves (1974) Phys. Rev. Lett., 33, pp. 148-151 | |
dc.description | Ohta, M., Stability of solitary waves for the Zakharov equations (1995) Dynamical Systems and Applications, pp. 563-571. , (ed. R. Agarwal) (World Scientific) | |
dc.description | Tsutsumi, M., Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation (1993) Math. Sci. Appl., 2, pp. 513-528 | |
dc.description | Tsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for the long wave-short wave resonance equations (1994) Nonlin. Analysis, 22, pp. 155-171 | |
dc.description | Tsutsumi, M., Hatano, S., Well-posedness of the Cauchy problem for Benney's first equations of long wave/short wave interaction (1994) Funkcial. Ekvac., 37, pp. 289-316 | |
dc.description | Yajima, N., Oikawa, M., Formation and interaction of sonic-Langmuir solitons: Inverse scattering method (1976) Prog. Theor. Phys., 56, pp. 1719-1739 | |
dc.description | Yajima, N., Satsuma, J., Soliton solutions in a diatomic lattice system (1979) Prog. Theor. Phys., 62, pp. 370-378 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Royal Society of Edinburgh - Proceedings A | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Existence And Stability Of Ground-state Solutions Of A Schrödinger-kdv System | |
dc.type | Actas de congresos | |