Artículos de revistas
A Multiagent-based Constructive Approach For Feedforward Neural Networks
Registro en:
Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 2810, n. , p. 462 - 473, 2003.
3029743
2-s2.0-35248873519
Autor
Lima C.A.M.
Coelho A.L.V.
Von Zuben F.J.
Institución
Resumen
In this paper, a new constructive approach for the automatic definition of feedforward neural networks (FNNs) is introduced. Such approach (named MASCoNN) is multiagent-oriented and, thus, can be regarded as a kind of hybrid (synergetic) system. MASCoNN centers upon the employment of a two-level hierarchy of agent-based elements for the progressive allocation of neuronal building blocks. By this means, an FNN can be considered as an architectural organization of reactive neural agents, orchestrated by deliberative coordination entities via synaptic interactions. MASCoNN was successfully applied to implement nonlinear dynamic systems identification devices and some comparative results, involving alternative proposals, are analyzed here. © Springer-Verlag Berlin Heidelberg 2003. 2810
462 473 Dahmen, W., Micchelli, C.A., Some remarks on ridge functions (1987) Approximation Theory and Its Applications, 3 (2-3), pp. 139-143 Davis, P.J., (1975) Interpolation & Approximation, , Dover Publications, New York Fahlman, S.E., Lebiere, C., The cascade-correlation learning architecture (1990) Advances in Neural Information Processing Systems, 2, pp. 524-532. , D. S. Touretzky, editor, Morgan Kaufmann Ghosh, J., Neural-symbolic hybrid systems (2001) The Handbook of Applied Computational Intelligence, , M. Padget et al., editors, CRC Press (1995) Intelligent Hybrid Systems, , S. Goonatilake and S. Khebbal, editors. Wiley Härdle, W., (1990) Applied Nonparametric Regression, , Cambridge University Press Haykin, S., (1999) Neural Networks-A Comprehensive Foundation, , Prentice Hall Hwang, J., Lay, S., Maechler, M., Martin, D., Schimert, J., Regression modeling in backpropagation and project pursuit learning (1994) IEEE Trans. on Neural Networks, 5 (3), pp. 342-353. , May Kwok, T.-Y., Yeung, D.-Y., Constructive algorithms for structure learning in feedforward neural networks for regression problems (1997) IEEE Trans. on Neural Networks, 8 (3), pp. 630-645 Medskar, L.A., (1995) Hybrid Intelligent Systems, , Kluwer Academic Publisher Narendra, K., Parthasarathy, K., Identification and control of dynamical systems using neural networks (1990) IEEE Trans. on Neural Networks, 1 (1), pp. 4-27. , March Nrgaard, M., Ravn, O., Poulsen, N.K., Norgaard, P.M., Hansen, L.K., Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner's Handbook (2000) Advanced Textbooks in Control and Signal Processing, , Springer Pham, K.M., The NeurOagent: A Neural Multi-agent Approach for Modelling, Distributed Processing and Learning, pp. 221-244. , Goonatilake and Khebbal [5], chapter 12 Reed, R., Pruning algorithms-A survey (1993) IEEE Trans. on Neural Networks, 4 (5), pp. 740-747. , May Scherer, A., Schlageter, G., A Multi-agent Approach for the Integration of Neural Networks and Expert Systems, pp. 153-173. , Goonatilake and Khebbal [5], chapter 9 Selfridge, O.G., Pandemonium: A paradigm for learning (1958) Proc. Symp. Held Physical Lab.: Mechanisation Thought Processing, pp. 511-517. , London Śmieja, F.J., The pandemonium system of reflective agents (1996) IEEE Trans. on Neural Networks, 7 (1), pp. 97-106. , January Taha, I., Ghosh, J., Symbolic interpretation of artificial neural networks (1999) IEEE Trans. on Knowledge and Data Eng., 11 (3), pp. 448-463. , May/June Zuben, F.J.V., Netto, M., Projection pursuit and the solvability condition applied to constructive learning (1997) Proc. of the International Joint Conference on Neural Networks, 2, pp. 1062-1067