dc.creatorLima C.A.M.
dc.creatorCoelho A.L.V.
dc.creatorVon Zuben F.J.
dc.date2003
dc.date2015-06-30T17:28:58Z
dc.date2015-11-26T15:41:03Z
dc.date2015-06-30T17:28:58Z
dc.date2015-11-26T15:41:03Z
dc.date.accessioned2018-03-28T22:49:32Z
dc.date.available2018-03-28T22:49:32Z
dc.identifier
dc.identifierLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 2810, n. , p. 462 - 473, 2003.
dc.identifier3029743
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-35248873519&partnerID=40&md5=7915abfe61b0daed5142681206f3cd21
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102213
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102213
dc.identifier2-s2.0-35248873519
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264523
dc.descriptionIn this paper, a new constructive approach for the automatic definition of feedforward neural networks (FNNs) is introduced. Such approach (named MASCoNN) is multiagent-oriented and, thus, can be regarded as a kind of hybrid (synergetic) system. MASCoNN centers upon the employment of a two-level hierarchy of agent-based elements for the progressive allocation of neuronal building blocks. By this means, an FNN can be considered as an architectural organization of reactive neural agents, orchestrated by deliberative coordination entities via synaptic interactions. MASCoNN was successfully applied to implement nonlinear dynamic systems identification devices and some comparative results, involving alternative proposals, are analyzed here. © Springer-Verlag Berlin Heidelberg 2003.
dc.description2810
dc.description
dc.description462
dc.description473
dc.descriptionDahmen, W., Micchelli, C.A., Some remarks on ridge functions (1987) Approximation Theory and Its Applications, 3 (2-3), pp. 139-143
dc.descriptionDavis, P.J., (1975) Interpolation & Approximation, , Dover Publications, New York
dc.descriptionFahlman, S.E., Lebiere, C., The cascade-correlation learning architecture (1990) Advances in Neural Information Processing Systems, 2, pp. 524-532. , D. S. Touretzky, editor, Morgan Kaufmann
dc.descriptionGhosh, J., Neural-symbolic hybrid systems (2001) The Handbook of Applied Computational Intelligence, , M. Padget et al., editors, CRC Press
dc.description(1995) Intelligent Hybrid Systems, , S. Goonatilake and S. Khebbal, editors. Wiley
dc.descriptionHärdle, W., (1990) Applied Nonparametric Regression, , Cambridge University Press
dc.descriptionHaykin, S., (1999) Neural Networks-A Comprehensive Foundation, , Prentice Hall
dc.descriptionHwang, J., Lay, S., Maechler, M., Martin, D., Schimert, J., Regression modeling in backpropagation and project pursuit learning (1994) IEEE Trans. on Neural Networks, 5 (3), pp. 342-353. , May
dc.descriptionKwok, T.-Y., Yeung, D.-Y., Constructive algorithms for structure learning in feedforward neural networks for regression problems (1997) IEEE Trans. on Neural Networks, 8 (3), pp. 630-645
dc.descriptionMedskar, L.A., (1995) Hybrid Intelligent Systems, , Kluwer Academic Publisher
dc.descriptionNarendra, K., Parthasarathy, K., Identification and control of dynamical systems using neural networks (1990) IEEE Trans. on Neural Networks, 1 (1), pp. 4-27. , March
dc.descriptionNrgaard, M., Ravn, O., Poulsen, N.K., Norgaard, P.M., Hansen, L.K., Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner's Handbook (2000) Advanced Textbooks in Control and Signal Processing, , Springer
dc.descriptionPham, K.M., The NeurOagent: A Neural Multi-agent Approach for Modelling, Distributed Processing and Learning, pp. 221-244. , Goonatilake and Khebbal [5], chapter 12
dc.descriptionReed, R., Pruning algorithms-A survey (1993) IEEE Trans. on Neural Networks, 4 (5), pp. 740-747. , May
dc.descriptionScherer, A., Schlageter, G., A Multi-agent Approach for the Integration of Neural Networks and Expert Systems, pp. 153-173. , Goonatilake and Khebbal [5], chapter 9
dc.descriptionSelfridge, O.G., Pandemonium: A paradigm for learning (1958) Proc. Symp. Held Physical Lab.: Mechanisation Thought Processing, pp. 511-517. , London
dc.descriptionŚmieja, F.J., The pandemonium system of reflective agents (1996) IEEE Trans. on Neural Networks, 7 (1), pp. 97-106. , January
dc.descriptionTaha, I., Ghosh, J., Symbolic interpretation of artificial neural networks (1999) IEEE Trans. on Knowledge and Data Eng., 11 (3), pp. 448-463. , May/June
dc.descriptionZuben, F.J.V., Netto, M., Projection pursuit and the solvability condition applied to constructive learning (1997) Proc. of the International Joint Conference on Neural Networks, 2, pp. 1062-1067
dc.languageen
dc.publisher
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsfechado
dc.sourceScopus
dc.titleA Multiagent-based Constructive Approach For Feedforward Neural Networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución