Artículos de revistas
Pharmacological And Structural Characterization Of A Novel Phospholipase A2 From Micrurus Dumerilii Carinicauda Venom
Registro en:
Toxicon. , v. 46, n. 7, p. 736 - 750, 2005.
410101
10.1016/j.toxicon.2005.07.016
2-s2.0-27544437523
Autor
Dal Belo C.A.
Leite G.B.
Toyama M.H.
Marangoni S.
Corrado A.P.
Fontana M.D.
Southan A.
Rowan E.G.
Hyslop S.
Rodrigues-Simioni L.
Institución
Resumen
We have isolated a new phospholipase A2 (MiDCA1) from the venom of the coral snake Micrurus dumerilii carinicauda. This toxin, which had a molecular mass of 15,552 Da, shared high sequence homology with the PLA 2 toxins MICNI A and B from Micrurus nigrocinctus venom (77.7% and 73.1%, respectively). In chick biventer cervicis preparations, MiDCA1 produced concentration- and time-dependent neuromuscular blockade that reached 100% after 120 min (2.4 μM, n=6); contractures to exogenously applied carbachol (8 μM) and KCl (13 mM) were still seen after complete blockade. In mouse phrenic-nerve diaphragm preparations, MiDCA1 (2.4 μM; n=6) caused triphasic changes followed by partial neuromuscular blockade. Intracellular recordings of end-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) from mouse diaphragm preparations showed that MiDCA1 increased the quantal content by 386±12% after 10 min (n=14; p<0.05) and caused a triphasic change in the frequency of MEPPs. MiDCA1 also decreased the resting membrane potential, an effect that was prevented by tetrodotoxin and/or low extracellular calcium, but not by d-tubocurarine. The toxin increased the amplitude of mouse sciatic-nerve compound action potentials by 30±9% (0.6 μM; p<0.05). Potassium currents elicited in freshly dissociated dorsal root ganglia neurones were blocked by 31±1% (n=4; p<0.05) in the presence of 2.4 μM MiDCA1. These results show that MiDCA1 is a new presynaptic phospholipase A2 that produces neuromuscular blockade in vertebrate nerve-muscle preparations. The triphasic effects seen in mammalian preparations and the facilitatory response were probably caused mainly by the activation of sodium channels, complemented by the blockade of nerve terminal potassium channels. The inability of d-turocurarine to prevent the depolarization by MiDCA1 indicated that cholinergic nicotinic receptors were not involved in this phenomenon. 46 7 736 750 Alapé-Giron, A., Persson, B., Cederlund, E., Flores-Diaz, M., Gutiérrez, J.M., Thelestam, M., Bergman, T., Jornvall, H., Elapid venom toxins: Multiple recruitments of ancient scaffolds (1999) Eur. J. Biochem., 259, pp. 225-234 Bougis, P.E., Marchot, P., Rochat, H., Characterization of elapid snake venom components using optimized reverse-phase high performance liquid chromatographic conditions and screening assays for α-neurotoxin and phospholipase A2 activities (1986) Biochemistry, 25, pp. 7235-7243 Borja-Oliveira, C.R., Durigon, A.M., Vallin, A.C., Toyama, M.H., Souccar, C., Marangoni, S., Rodrigues-Simioni, L., The pharmacological effect of Bothrops neuwiedii pauloensis (jararaca-pintada) snake venom on avian neuromuscular transmission (2003) Braz. J. Med. Biol. Res., 36, pp. 617-624 Bülbring, E., Observations on the isolated phrenic nerve-diaphragm preparation of the rat (1946) Br. J. Pharmacol., 1, pp. 38-56 Campbell, J.A., Lamar, W.W., (1989) The Venomous Reptiles of Latin America, , Comstock Publishers/Cornell University Press Ithaca, NY Carredano, E., Westerlund, B., Persson, B., Saarinen, M., Ramaswamy, S., Eaker, D., Eklund, H., The three-dimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2 (1998) Toxicon, 36, pp. 75-92 Chang, C.C., Lee, J.D., Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission (1973) J. Pharmacol. Exp. Ther., 184, pp. 339-345 Chang, C.C., Lee, J.D., Crotoxin, the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like beta-bungarotoxin. Naunyn Schmiedeberg's Arch (1977) Pharmacol, 296, pp. 159-168 Cho, W., Kézdy, F.J., Chromogenic substrates and assay of phospholipases A2 (1991) Methods Enzymol., 197, pp. 75-79 Dal Belo, C.A., Leite, G.B., Fontana, M.D., Corrado, A.P., Baso, A.C.Z., Moreno-Serra, C.S.N., Oliveira, A.C., Rodrigues-Simioni, L., New evidence for a presynaptic action of prednisolone at neuromuscular junctions (2002) Muscle Nerve, 26, pp. 37-43 Dempster, J., Computer analysis of electrophysiological signals (1988) Microcomputers in Physiology: A Practical Approach, pp. 51-93. , P.J. Frazer IRL Press Oxford Dodds, D.C., Omeis, I.A., Cushman, S.J., Helms, J.A., Perin, M.S., Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49 (1997) J. Biol. Chem., 272, pp. 21488-21494 Dreyer, F., Penner, R., The action of presynaptic snake toxins on membrane currents of mouse motor nerve terminals (1987) J. Physiol., 386, pp. 455-463 Elmqvist, D., Quastel, D.M.J., A quantitative study of end-plate potentials in isolated human muscle (1965) J. Physiol., 178, pp. 505-529 Flinck, M.T., Atchison, W.D., Iberitoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals (2003) J. Pharmacol. Exp. Ther., 305, pp. 646-652 Fontana, M.D., Vital Brazil, O.V., Mode of action of Phoneutria negriventer spider venom at isolated phrenic nerve-diaphragm of the rat (1985) Braz. J. Med. Biol. Res., 18, pp. 557-565 Geh, S.L., Rowan, E.G., Harvey, A.L., Neuromuscular effects of four phospholipases A2 from the venom of Pseudechis australis, the Australian king brown snake (1992) Toxicon, 30, pp. 1051-1057 Ginsborg, B.L., Warriner, J.N., The isolated chick biventer cervicis nerve muscle preparation (1960) Br. J. Pharmacol., 15, pp. 410-411 Holzer, M., MacKessy, S.P., An aqueous endpoint assay of snake venom phospholipase A2 (1996) Toxicon, 34, pp. 1149-1155 J.da Silva, J.N., Aird, S.D., Prey specificity, comparative lethality and compositional differences of coral snake venoms (2001) Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 128, pp. 425-456 J.da Silva, J.N., Bucaretchi, F., Mecanismo de ação do veneno elapídico e aspectos clínicos dos acidentes (2003) Animais Peçonhentos No Brasil. Biologia, Clínica e Terapêutica Dos Acidentes, pp. 99-107. , J.L.C. Cardoso F.O.S. França F.H. Wen C.M.S. Málaque V. Haddad Jr. Sarvier & FAPESP São Paulo Jorgensen, K., Davidsen, J., Mouritsen, O.G., Biophysical mechanisms of phospholipase A2 activation and use in liposome-based drug delivery (2002) FEBS Lett., 521, pp. 23-27 Kini, R.M., Evans, H.J., A model to explain the pharmacological effects of snake venom phospholipases A2 (1989) Toxicon, 27, pp. 613-635 Kini, R.M., Iwanaga, S., Structure-function relationships of phospholipases. I. Prediction of presynaptic neurotoxicity (1986) Toxicon, 24, pp. 527-541 Krizaj, I., Gubensek, F., Neuronal receptors for phospholipases A2 and β-neurotoxicity (2000) Biochimie, 82, pp. 807-814 Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 Lee, C.Y., Ho, C.L., The pharmacology of phospholipases A2 isolated from snake venoms, with particular reference in their effects on neuromuscular transmission (1982) Advances in Pharmacology and Therapeutics I, pp. 37-51. , H. Oshida S. Hagihara S. Ebashi Pergamon Press Oxford Martin, A.R., A further study of the statistical composition of the end-plate potential (1955) J. Physiol., 130, pp. 114-122 McDowell, S.B., Systematics (1987) Snakes: Ecology and Evolutionary Biology, pp. 3-50. , R.A. Siegel J.T. Collins S.S. Nowak Macmillan New York Miyamoto, M., Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junction (1975) J. Physiol., 250, pp. 121-142 Oberg, S.G., Kelly, R.B., The mechanism of beta-bungarotoxin action. I. Modification of transmitter release at the neuromuscular junction (1976) J. Neurobiol., 7, pp. 129-141 Paparounas, K., O'Hanlon, G.M., O'Leavy, C.P., Rowan, E.G., Willison, H.J., Anti-ganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro (1999) Brain, 122, pp. 807-816 Rodrigues-Simioni, L., Borgese, N., Ceccarelli, B., The effects of Bothrops jararacussu venom and its components in frog nerve-muscle preparation (1983) Neuroscience, 10, pp. 475-489 Rosenberg, P., The relationship between enzymatic activity and pharmacological properties of phospholipases in natural poisons (1986) Natural Toxins - Animal, Plant, and Microbial, pp. 129-174. , J.B. Harris Clarendon Press Oxford Roze, J.A., New World coral snakes (Elapidae): A taxonomic and biological summary (1982) Mem. Inst. Butantan, 46, pp. 305-338 Roze, J.A., (1996) Coral Snakes of the Americas. Biology, Identification and Venoms, , Struik Publishing Co. Malabar, FL Rowan, E.G., Harvey, A.L., Potassium channel blocking actions of β-bungarotoxin and related toxins on mouse and frog motor nerve terminals (1988) Br. J. Pharmacol., 94, pp. 839-847 Rowan, E.G., Harvey, A.L., Takasaki, C., Tamiya, N., Neuromuscular effects of three phospholipases A2 from the venom of the Australian king brown snake Pseudechis australis (1989) Toxicon, 27, pp. 551-560 Serafim, F.G., Reali, M., Cruz-Höfling, M.A., Fontana, M.D., Action of Micrurus dumerilii carinicauda coral snake venom on the mammalian neuromuscular junction (2002) Toxicon, 40, pp. 167-174 Singh, G., Gourinath, S., Sharma, S., Paramasivam, M., Srinivasan, A., Singh, T.P., Sequence and crystal structure determination of basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 Å resolution: Identification and characterisation of its pharmacological sites (2001) J. Mol. Biol., 307, pp. 1049-1059 Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., Amino acid sequence of piratoxin-II, a myotoxic Lys49 phospholipase A2 homologue from Bothrops pirajai venom (2000) Biochimie, 82, pp. 245-250 Van Der Kloot, W., Nicotinic agonists antagonize quantal size increases and evoked release at frog neuromuscular junction (1993) J. Physiol., 468, pp. 567-589 Valentin, E., Lambeau, G., Increasing molecular diversity of secreted phospholipases A2 and their receptors and binding proteins (2000) Biochim. Biophys. Acta, 1488, pp. 59-70 Westerlund, B., Nordlund, P., Uhlin, U., Eaker, D., Eklund, H., The three dimensional-structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 Å resolution (1992) FEBS Lett., 301, pp. 159-164 Yang, C.C., Chemical modification and functional sites of phospholipases A 2 (1997) Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, pp. 185-204. , R.M. Kini Wiley Chichester Zadori, Z., Szelei, J., Lacoste, M.C., Li, Y., Gariepy, S., Raymond, P., Allaire, M., Tijssen, P., A viral phospholipase A2 is required for parvovirus infectivity (2001) Dev. Cell., 1, pp. 291-302