Artículos de revistas
On Ill-posedness For The Generalized Bbm Equation
Registro en:
Discrete And Continuous Dynamical Systems- Series A. Southwest Missouri State University, v. 34, n. 11, p. 4565 - 4576, 2014.
10780947
10.3934/dcds.2014.34.4565
2-s2.0-84901812681
Autor
Carvajal X.
Panthee M.
Institución
Resumen
We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the L2-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth. 34 11 4565 4576 Alazman, A.A., Albert, J.P., Bona, J.L., Chen, M., Wu, J., Comparisons between the BBM equation and a Boussinesq system (2006) Adv. Differential Equations, 11, pp. 121-166 Angulo Pava, J., Banquet, C., Scialom, M., Stability for the moDiffed and fourth Benjamin- Bona-Mahony equations (2011) Discrete Contin. Dyn. Syst., 30, pp. 851-871 Benjamin, T.B., Bona, J.L., Mahony, J.J., Model equations for long waves in nonlinear dispersive systems (1972) Phil. Trans. Royal Soc. London, 272, pp. 47-78 Bona, J.L., Pritchard, W.G., Scott, L.R., An evaluation of a model equation for water waves (1981) Philos. Trans. Royal Soc. London Series A, 302, pp. 457-510 Bona, J.L., Tzvetkov, N., Sharp well-posedness results for the BBM equation (2009) Discrete and Continuous Dynamical Systems, 23, pp. 1241-1252 Bona, J., Chen, H., Well-posedness for regularized nonlinear dispersive wave equations (2009) Disc. Cont. Dynamical Systems, 23, pp. 1253-1275 Bourgain, J., Periodic Korteweg de Vries equation with measures as initial data (1997) Selecta Math. New Ser., 3, pp. 115-159 Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation (1993) Geom. Funct. Anal., 3, pp. 209-262 Chen, W., Li, J., On the low regularity of the moDiffed Korteweg-de Vries equation with a dissipative term (2007) J. Diff. Equations, 240, pp. 125-144 Christ, M., Colliander, J., Tao, T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations (2003) American Journal of Mathematics, 125 (6), pp. 1235-1293 Molinet, L., A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space, arXiv:1110.2352v1 (2013) Proc. Amer. Math. Soc., 141, pp. 2793-2798 Molinet, L., Ribaud, F., On the low regularity of the Korteweg-de Vries-Burgers Equation (2002) Int. Math. Research Notices, pp. 1979-2005 Molinet, L., Ribaud, F., Youssfi, A., Ill-posedness issues for a class of parabolic equations (2002) Royal Society of Edinburgh - Proceedings A, 132 (6), pp. 1407-1416 Molinet, L., Saut, J.-C., Tzvetkov, N., Ill-posedness issues for the Benjamin-Ono and related equations (2001) SIAM. J. Math. Anal., 33, pp. 982-988 Panthee, M., On the ill-posedness result for the BBM equation (2011) Discrete Contin. Dyn. Syst., 30, pp. 253-259 Tzvetkov, N., Remark on the local ill-posedness for KdV equation (1999) C. R. Acad. Sci. Paris Ser. i Math., 329, pp. 1043-1047