dc.creatorCarvajal X.
dc.creatorPanthee M.
dc.date2014
dc.date2015-06-25T17:51:06Z
dc.date2015-11-26T15:40:14Z
dc.date2015-06-25T17:51:06Z
dc.date2015-11-26T15:40:14Z
dc.date.accessioned2018-03-28T22:48:43Z
dc.date.available2018-03-28T22:48:43Z
dc.identifier
dc.identifierDiscrete And Continuous Dynamical Systems- Series A. Southwest Missouri State University, v. 34, n. 11, p. 4565 - 4576, 2014.
dc.identifier10780947
dc.identifier10.3934/dcds.2014.34.4565
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84901812681&partnerID=40&md5=0efb4c67f83ec170fa460e10539f825c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85982
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85982
dc.identifier2-s2.0-84901812681
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264329
dc.descriptionWe consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the L2-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
dc.description34
dc.description11
dc.description4565
dc.description4576
dc.descriptionAlazman, A.A., Albert, J.P., Bona, J.L., Chen, M., Wu, J., Comparisons between the BBM equation and a Boussinesq system (2006) Adv. Differential Equations, 11, pp. 121-166
dc.descriptionAngulo Pava, J., Banquet, C., Scialom, M., Stability for the moDiffed and fourth Benjamin- Bona-Mahony equations (2011) Discrete Contin. Dyn. Syst., 30, pp. 851-871
dc.descriptionBenjamin, T.B., Bona, J.L., Mahony, J.J., Model equations for long waves in nonlinear dispersive systems (1972) Phil. Trans. Royal Soc. London, 272, pp. 47-78
dc.descriptionBona, J.L., Pritchard, W.G., Scott, L.R., An evaluation of a model equation for water waves (1981) Philos. Trans. Royal Soc. London Series A, 302, pp. 457-510
dc.descriptionBona, J.L., Tzvetkov, N., Sharp well-posedness results for the BBM equation (2009) Discrete and Continuous Dynamical Systems, 23, pp. 1241-1252
dc.descriptionBona, J., Chen, H., Well-posedness for regularized nonlinear dispersive wave equations (2009) Disc. Cont. Dynamical Systems, 23, pp. 1253-1275
dc.descriptionBourgain, J., Periodic Korteweg de Vries equation with measures as initial data (1997) Selecta Math. New Ser., 3, pp. 115-159
dc.descriptionBourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation (1993) Geom. Funct. Anal., 3, pp. 209-262
dc.descriptionChen, W., Li, J., On the low regularity of the moDiffed Korteweg-de Vries equation with a dissipative term (2007) J. Diff. Equations, 240, pp. 125-144
dc.descriptionChrist, M., Colliander, J., Tao, T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations (2003) American Journal of Mathematics, 125 (6), pp. 1235-1293
dc.descriptionMolinet, L., A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space, arXiv:1110.2352v1 (2013) Proc. Amer. Math. Soc., 141, pp. 2793-2798
dc.descriptionMolinet, L., Ribaud, F., On the low regularity of the Korteweg-de Vries-Burgers Equation (2002) Int. Math. Research Notices, pp. 1979-2005
dc.descriptionMolinet, L., Ribaud, F., Youssfi, A., Ill-posedness issues for a class of parabolic equations (2002) Royal Society of Edinburgh - Proceedings A, 132 (6), pp. 1407-1416
dc.descriptionMolinet, L., Saut, J.-C., Tzvetkov, N., Ill-posedness issues for the Benjamin-Ono and related equations (2001) SIAM. J. Math. Anal., 33, pp. 982-988
dc.descriptionPanthee, M., On the ill-posedness result for the BBM equation (2011) Discrete Contin. Dyn. Syst., 30, pp. 253-259
dc.descriptionTzvetkov, N., Remark on the local ill-posedness for KdV equation (1999) C. R. Acad. Sci. Paris Ser. i Math., 329, pp. 1043-1047
dc.languageen
dc.publisherSouthwest Missouri State University
dc.relationDiscrete and Continuous Dynamical Systems- Series A
dc.rightsfechado
dc.sourceScopus
dc.titleOn Ill-posedness For The Generalized Bbm Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución