Artículos de revistas
Oxidative Stress And Susceptibility To Mitochondrial Permeability Transition Precedes The Onset Of Diabetes In Autoimmune Non-obese Diabetic Mice
Registration in:
Free Radical Research. Informa Healthcare, v. 48, n. 12, p. 1494 - 1504, 2014.
10715762
10.3109/10715762.2014.966706
2-s2.0-84908670728
Author
Malaguti C.
La Guardia P.G.
Leite A.C.R.
Oliveira D.N.
De Lima Zollner R.L.
Catharino R.R.
Vercesi A.E.
Oliveira H.C.F.
Institutions
Abstract
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2′,7′-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death. 48 12 1494 1504 ACRL; Association of College and Research Libraries; CAPES; Association of College and Research Libraries Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Delmastro, M.M., Piganelli, J.D., Oxidative stress and redox modulation potential in type 1 diabetes (2011) Clin Dev Immunol, 2011, p. 593863 Rabinovitch, A., Suarez-Pinzon, W.L., Strynadka, K., Lakey, J.R., Rajotte, R.V., Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production (1996) J Clin Endocrinol Metab, 81, pp. 3197-3202 Augstein, P., Elefanty, A.G., Allison, J., Harrison, L.C., Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes (1998) Diabetologia, 41, pp. 1381-1388 Barthson, J., Germano, C.M., Moore, F., Maida, A., Drucker, D.J., Marchetti, P., Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation (2011) J Biol Chem, 286, pp. 39632-39643 Gurzov, E.N., Eizirik, D.L., Bcl-2 proteins in diabetes: Mitochondrial pathways of beta-cell death and dysfunction (2011) Trends Cell Biol, 21, pp. 424-431 Thomas, H.E., McKenzie, M.D., Angstetra, E., Campbell, P.D., Kay, T.W., Apoptosis. Beta cell apoptosis in diabetes (2009) Apoptosis, 14, pp. 1389-1404 Kowaltowski, A.J., De Souza-Pinto, N.C., Castilho, R.F., Vercesi, A.E., Mitochondria and reactive oxygen species (2009) Free Radic Biol Med, 47, pp. 333-343 Vercesi, A.E., Castilho, R.F., Kowaltowski, A.J., Oliveira HC Mitochondrial energy metabolism and redox state in dyslipidemias (2007) IUBMB Life, 59, pp. 263-268 Kowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (1999) Free Radic Biol Med, 26, pp. 463-471 Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15 Skulachev, V.P., Cytochrome c in the apoptotic and antioxidant cascades (1998) FEBS Lett, 423, pp. 275-280 Leite, A.C., Oliveira, H.C., Utino, F.L., Garcia, R., Alberici, L.C., Fernandes, M.P., Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols (2010) Biochim Biophys Acta, 1797, pp. 1210-1216 Brookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., Anderson, P.G., Concentration-dependent eff ects of nitric oxide on mitochondrial permeability transition and cytochrome c release (2000) J Biol Chem, 275, pp. 20474-20479 Lemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim Biophys Acta, 1787, pp. 1395-1401 Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J, 19, pp. 278-280 Alberici, L.C., Oliveira, H.C., Bighetti, E.J., De Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J Bioenerg Biomembr, 35, pp. 451-457 Alberici, L.C., Oliveira, H.C., Paim, B.A., Mantello, C.C., Augusto, A.C., Zecchin, K.G., Mitochondrial ATP-sensitive K (+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia (2009) Free Radic Biol Med, 47, pp. 1432-1439 Paim, B.A., Velho, J.A., Castilho, R.F., Oliveira, H.C., Vercesi, A.E., Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement (2008) Free Radic Biol Med, 44, pp. 444-451 Figueira, T.R., Castilho, R.F., Saito, A., Oliveira, H.C., Vercesi, A.E., The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion (2011) Mol Genet Metab, 104, pp. 521-528 Martinez-Abundis, E., Rajapurohitam, V., Haist, J.V., Gan, X.T., Karmazyn, M., The obesity-related peptide leptin sensitizes cardiac mitochondria to calcium-induced permeability transition pore opening and apoptosis (2012) PLoS One, 7, p. e41612 Huhn, R., Heinen, A., Hollmann, M.W., Schlack, W., Preckel, B., Weber, N.C., Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo (2009) Nutr Metab Cardiovasc Dis, 20, pp. 706-712 Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K., Tochino, Y., Breeding of a non-obese, diabetic strain of mice (1980) Jikken Dobutsu, 29, pp. 1-13 Anderson, M.S., Bluestone, J.A., The NOD mouse: A model of immune dysregulation (2005) Annu Rev Immunol, 23, pp. 447-485 Babad, J., Geliebter, A., DiLorenzo, T.P., T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes (2010) Immunology, 131, pp. 459-465 Liang, K., Du, W., Zhu, W., Liu, S., Cui, Y., Sun, H., Contribution of different mechanisms to pancreatic beta-cell hypersecretion in non-obese diabetic (NOD) mice during pre-diabetes (2011) J Biol Chem, 286, pp. 39537-39545 Kikutani, H., Makino, S., The murine autoimmune diabetes model: NOD and related strains (1992) Adv Immunol, 51, pp. 285-322 Ventura-Oliveira, D., Vilella, C.A., Zanin, M.E., Castro, G.M., Moreira Filho, D.C., Zollner, R.L., Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice (2002) Braz J Med Biol Res, 35, pp. 1347-1355 Kaplan, R.S., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) Biochem J, 212, pp. 279-288 Murphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., Fiskum, G., Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria (1996) P Natl Acad Sci USA, 93, pp. 9893-9898 Degasperi, G.R., Velho, J.A., Zecchin, K.G., Souza, C.T., Velloso, L.A., Borecky, J., Role of mitochondria in the immune response to cancer: A central role for Ca2+ (2006) J Bioenerg Biomembr, 38, pp. 1-10 Payne, C.M., Weber, C., Crowley-Skillicorn, C., Dvorak, K., Bernstein, H., Bernstein, C., Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells (2007) Carcinogenesis, 28, pp. 215-222 Shepherd, D., Garland, P.B., The kinetic properties of citrate synthase from rat liver mitochondria (1969) Biochem J, 114, pp. 597-610 Valle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch Biochem Biophys, 307, pp. 1-7 Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C., Kowaltowski, A.J., Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health (2012) Antioxid Redox Signal, 18, pp. 2029-2074 Kumar, S., Patel, S., Jyoti, A., Keshari, R.S., Verma, A., Barthwal, M.K., Dikshit, M., Nitric oxide-mediated augmentation of neutrophil reactive oxygen and nitrogen species formation: Critical use of probes (2010) Cytometry A, 77, pp. 1038-1048 Karlsson, M., Kurz, T., Brunk, U.T., Nilsson, S.E., Frennesson, C.I., What does the commonly used DCF test for oxidative stress really show? (2010) Biochem J, 428, pp. 183-190 Degasperi, G.R., Denis, R.G., Morari, J., Solon, C., Geloneze, B., Stabe, C., Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients (2009) Metabolism, 58, pp. 1087-1095 Herzog, E.L., Chai, L., Krause, D.S., Plasticity of marrow-derived stem cells (2003) Blood, 102, pp. 3483-3493 Fiorina, P., Voltarelli, J., Zavazava, N., Immunological applications of stem cells in type 1 diabetes (2011) Endocr Rev, 32, pp. 725-754 Robinson, K.M., Janes, M.S., Beckman, J.S., The selective detection of mitochondrial superoxide by live cell imaging (2008) Nat Protoc, 3, pp. 941-947 Zielonka, J., Vasquez-Vivar, J., Kalyanaraman, B., Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine (2008) Nat Protoc, 3, pp. 8-21 Herlein, J.A., Fink, B.D., O'Malley, Y., Sivitz, W.I., Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats (2009) Endocrinology, 150, pp. 46-55 Bonnard, C., Durand, A., Peyrol, S., Chanseaume, E., Chauvin, M.A., Morio, B., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulinresistant mice (2008) J Clin Invest, 118, pp. 789-800 Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Ca (2 +) transfer from the ER to mitochondria: When, how and why (2009) Biochim Biophys Acta, 1787, pp. 1342-1351 Rizzuto, R., De Stefani, D., Raffaello, A., Mammucari, C., Mitochondria as sensors and regulators of calcium signalling (2012) Nat Rev Mol Cell Biol, 13, pp. 566-578 Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Calcium signaling around mitochondria associated membranes (MAMs) (2011) Cell Commun Signal, 9, p. 19 Imai, Y., Dobrian, A.D., Morris, M.A., Nadler, J.L., Islet inflammation: A unifying target for diabetes treatment? (2013) Trends Endocrinol Metab, 24, pp. 351-360 Ma, Z.A., Zhao, Z., Turk, J., Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus (2012) Exp Diabetes Res, p. 703538 Han, X., Yang, J., Yang, K., Zhao, Z., Abendschein, D.R., Gross, R.W., Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study (2007) Biochemistry, 46, pp. 6417-6428 Chicco, A.J., Sparagna, G.C., Role of cardiolipin alterations in mitochondrial dysfunction and disease (2007) Am J Physiol Cell Physiol, 292, pp. C33-C44 Bao, S., Song, H., Tan, M., Wohltmann, M., Ladenson, J.H., Turk, J., Group VIB Phospholipase A (2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents (2012) Oxid Med Cell Longev, p. 989372 Kim, C.H., Vaziri, N.D., Rodriguez-Iturbe, B., Integrin expression and H2O2 production in circulating and splenic leukocytes of obese rats (2007) Obesity (Silver Spring), 15, pp. 2209-2216 Barcellos-de-Souza, P., Moraes, J.A., De-Freitas-Junior, J.C., Morgado-Diaz, J.A., Barja-Fidalgo, C., Arruda, M.A., Heme modulates intestinal epithelial cell activation: Involvement of NADPHox-derived ROS signaling (2012) Am J Physiol Cell Physiol, 304, pp. C170-C179 Gauss, K.A., Nelson-Overton, L.K., Siemsen, D.W., Gao, Y., DeLeo, F.R., Quinn, M.T., Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha (2007) J Leukoc Biol, 82, pp. 729-741 Hidalgo, C., Donoso, P., Crosstalk between calcium and redox signaling: From molecular mechanisms to health implications (2008) Antioxid Redox Signal, 10, pp. 1275-1312 Hidalgo, C., Donoso, P., Carrasco, M.A., The ryanodine receptors Ca2+ release channels: Cellular redox sensors? (2005) IUBMB Life, 57, pp. 315-322 Zong, H., Ward, M., Stitt, A.W., AGEs, RAGE, and diabetic retinopathy (2011) Curr Diab Rep, 11, pp. 244-252 Giacco, F., Brownlee, M., Oxidative stress and diabetic complications (2010) Circ Res, 107, pp. 1058-1070 Barlovic, D.P., Soro-Paavonen, A., Jandeleit-Dahm, K.A., RAGE biology, atherosclerosis and diabetes (2011) Clin Sci (Lond), 121, pp. 43-55 He, C.J., Koschinsky, T., Buenting, C., Vlassara, H., Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE (2001) Mol Med, 7, pp. 159-168 Peter-Katalinic, J., Fischer, W., Alpha-d-glucopyranosyl-, d-alanyl- and l-lysylcardiolipin from gram-positive bacteria: Analysis by fast atom bombardment mass spectrometry (1998) J Lipid Res, 39, pp. 2286-2292