dc.creator | Malaguti C. | |
dc.creator | La Guardia P.G. | |
dc.creator | Leite A.C.R. | |
dc.creator | Oliveira D.N. | |
dc.creator | De Lima Zollner R.L. | |
dc.creator | Catharino R.R. | |
dc.creator | Vercesi A.E. | |
dc.creator | Oliveira H.C.F. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:51:03Z | |
dc.date | 2015-11-26T15:39:56Z | |
dc.date | 2015-06-25T17:51:03Z | |
dc.date | 2015-11-26T15:39:56Z | |
dc.date.accessioned | 2018-03-28T22:48:24Z | |
dc.date.available | 2018-03-28T22:48:24Z | |
dc.identifier | | |
dc.identifier | Free Radical Research. Informa Healthcare, v. 48, n. 12, p. 1494 - 1504, 2014. | |
dc.identifier | 10715762 | |
dc.identifier | 10.3109/10715762.2014.966706 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84908670728&partnerID=40&md5=65e50581ec4fe70704b78d21f77534a3 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85972 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85972 | |
dc.identifier | 2-s2.0-84908670728 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1264251 | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2′,7′-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death. | |
dc.description | 48 | |
dc.description | 12 | |
dc.description | 1494 | |
dc.description | 1504 | |
dc.description | ACRL; Association of College and Research Libraries; CAPES; Association of College and Research Libraries | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Delmastro, M.M., Piganelli, J.D., Oxidative stress and redox modulation potential in type 1 diabetes (2011) Clin Dev Immunol, 2011, p. 593863 | |
dc.description | Rabinovitch, A., Suarez-Pinzon, W.L., Strynadka, K., Lakey, J.R., Rajotte, R.V., Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production (1996) J Clin Endocrinol Metab, 81, pp. 3197-3202 | |
dc.description | Augstein, P., Elefanty, A.G., Allison, J., Harrison, L.C., Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes (1998) Diabetologia, 41, pp. 1381-1388 | |
dc.description | Barthson, J., Germano, C.M., Moore, F., Maida, A., Drucker, D.J., Marchetti, P., Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation (2011) J Biol Chem, 286, pp. 39632-39643 | |
dc.description | Gurzov, E.N., Eizirik, D.L., Bcl-2 proteins in diabetes: Mitochondrial pathways of beta-cell death and dysfunction (2011) Trends Cell Biol, 21, pp. 424-431 | |
dc.description | Thomas, H.E., McKenzie, M.D., Angstetra, E., Campbell, P.D., Kay, T.W., Apoptosis. Beta cell apoptosis in diabetes (2009) Apoptosis, 14, pp. 1389-1404 | |
dc.description | Kowaltowski, A.J., De Souza-Pinto, N.C., Castilho, R.F., Vercesi, A.E., Mitochondria and reactive oxygen species (2009) Free Radic Biol Med, 47, pp. 333-343 | |
dc.description | Vercesi, A.E., Castilho, R.F., Kowaltowski, A.J., Oliveira HC Mitochondrial energy metabolism and redox state in dyslipidemias (2007) IUBMB Life, 59, pp. 263-268 | |
dc.description | Kowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (1999) Free Radic Biol Med, 26, pp. 463-471 | |
dc.description | Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15 | |
dc.description | Skulachev, V.P., Cytochrome c in the apoptotic and antioxidant cascades (1998) FEBS Lett, 423, pp. 275-280 | |
dc.description | Leite, A.C., Oliveira, H.C., Utino, F.L., Garcia, R., Alberici, L.C., Fernandes, M.P., Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols (2010) Biochim Biophys Acta, 1797, pp. 1210-1216 | |
dc.description | Brookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., Anderson, P.G., Concentration-dependent eff ects of nitric oxide on mitochondrial permeability transition and cytochrome c release (2000) J Biol Chem, 275, pp. 20474-20479 | |
dc.description | Lemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim Biophys Acta, 1787, pp. 1395-1401 | |
dc.description | Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J, 19, pp. 278-280 | |
dc.description | Alberici, L.C., Oliveira, H.C., Bighetti, E.J., De Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J Bioenerg Biomembr, 35, pp. 451-457 | |
dc.description | Alberici, L.C., Oliveira, H.C., Paim, B.A., Mantello, C.C., Augusto, A.C., Zecchin, K.G., Mitochondrial ATP-sensitive K (+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia (2009) Free Radic Biol Med, 47, pp. 1432-1439 | |
dc.description | Paim, B.A., Velho, J.A., Castilho, R.F., Oliveira, H.C., Vercesi, A.E., Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement (2008) Free Radic Biol Med, 44, pp. 444-451 | |
dc.description | Figueira, T.R., Castilho, R.F., Saito, A., Oliveira, H.C., Vercesi, A.E., The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion (2011) Mol Genet Metab, 104, pp. 521-528 | |
dc.description | Martinez-Abundis, E., Rajapurohitam, V., Haist, J.V., Gan, X.T., Karmazyn, M., The obesity-related peptide leptin sensitizes cardiac mitochondria to calcium-induced permeability transition pore opening and apoptosis (2012) PLoS One, 7, p. e41612 | |
dc.description | Huhn, R., Heinen, A., Hollmann, M.W., Schlack, W., Preckel, B., Weber, N.C., Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo (2009) Nutr Metab Cardiovasc Dis, 20, pp. 706-712 | |
dc.description | Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K., Tochino, Y., Breeding of a non-obese, diabetic strain of mice (1980) Jikken Dobutsu, 29, pp. 1-13 | |
dc.description | Anderson, M.S., Bluestone, J.A., The NOD mouse: A model of immune dysregulation (2005) Annu Rev Immunol, 23, pp. 447-485 | |
dc.description | Babad, J., Geliebter, A., DiLorenzo, T.P., T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes (2010) Immunology, 131, pp. 459-465 | |
dc.description | Liang, K., Du, W., Zhu, W., Liu, S., Cui, Y., Sun, H., Contribution of different mechanisms to pancreatic beta-cell hypersecretion in non-obese diabetic (NOD) mice during pre-diabetes (2011) J Biol Chem, 286, pp. 39537-39545 | |
dc.description | Kikutani, H., Makino, S., The murine autoimmune diabetes model: NOD and related strains (1992) Adv Immunol, 51, pp. 285-322 | |
dc.description | Ventura-Oliveira, D., Vilella, C.A., Zanin, M.E., Castro, G.M., Moreira Filho, D.C., Zollner, R.L., Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice (2002) Braz J Med Biol Res, 35, pp. 1347-1355 | |
dc.description | Kaplan, R.S., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) Biochem J, 212, pp. 279-288 | |
dc.description | Murphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., Fiskum, G., Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria (1996) P Natl Acad Sci USA, 93, pp. 9893-9898 | |
dc.description | Degasperi, G.R., Velho, J.A., Zecchin, K.G., Souza, C.T., Velloso, L.A., Borecky, J., Role of mitochondria in the immune response to cancer: A central role for Ca2+ (2006) J Bioenerg Biomembr, 38, pp. 1-10 | |
dc.description | Payne, C.M., Weber, C., Crowley-Skillicorn, C., Dvorak, K., Bernstein, H., Bernstein, C., Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells (2007) Carcinogenesis, 28, pp. 215-222 | |
dc.description | Shepherd, D., Garland, P.B., The kinetic properties of citrate synthase from rat liver mitochondria (1969) Biochem J, 114, pp. 597-610 | |
dc.description | Valle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch Biochem Biophys, 307, pp. 1-7 | |
dc.description | Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C., Kowaltowski, A.J., Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health (2012) Antioxid Redox Signal, 18, pp. 2029-2074 | |
dc.description | Kumar, S., Patel, S., Jyoti, A., Keshari, R.S., Verma, A., Barthwal, M.K., Dikshit, M., Nitric oxide-mediated augmentation of neutrophil reactive oxygen and nitrogen species formation: Critical use of probes (2010) Cytometry A, 77, pp. 1038-1048 | |
dc.description | Karlsson, M., Kurz, T., Brunk, U.T., Nilsson, S.E., Frennesson, C.I., What does the commonly used DCF test for oxidative stress really show? (2010) Biochem J, 428, pp. 183-190 | |
dc.description | Degasperi, G.R., Denis, R.G., Morari, J., Solon, C., Geloneze, B., Stabe, C., Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients (2009) Metabolism, 58, pp. 1087-1095 | |
dc.description | Herzog, E.L., Chai, L., Krause, D.S., Plasticity of marrow-derived stem cells (2003) Blood, 102, pp. 3483-3493 | |
dc.description | Fiorina, P., Voltarelli, J., Zavazava, N., Immunological applications of stem cells in type 1 diabetes (2011) Endocr Rev, 32, pp. 725-754 | |
dc.description | Robinson, K.M., Janes, M.S., Beckman, J.S., The selective detection of mitochondrial superoxide by live cell imaging (2008) Nat Protoc, 3, pp. 941-947 | |
dc.description | Zielonka, J., Vasquez-Vivar, J., Kalyanaraman, B., Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine (2008) Nat Protoc, 3, pp. 8-21 | |
dc.description | Herlein, J.A., Fink, B.D., O'Malley, Y., Sivitz, W.I., Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats (2009) Endocrinology, 150, pp. 46-55 | |
dc.description | Bonnard, C., Durand, A., Peyrol, S., Chanseaume, E., Chauvin, M.A., Morio, B., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulinresistant mice (2008) J Clin Invest, 118, pp. 789-800 | |
dc.description | Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Ca (2 +) transfer from the ER to mitochondria: When, how and why (2009) Biochim Biophys Acta, 1787, pp. 1342-1351 | |
dc.description | Rizzuto, R., De Stefani, D., Raffaello, A., Mammucari, C., Mitochondria as sensors and regulators of calcium signalling (2012) Nat Rev Mol Cell Biol, 13, pp. 566-578 | |
dc.description | Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Calcium signaling around mitochondria associated membranes (MAMs) (2011) Cell Commun Signal, 9, p. 19 | |
dc.description | Imai, Y., Dobrian, A.D., Morris, M.A., Nadler, J.L., Islet inflammation: A unifying target for diabetes treatment? (2013) Trends Endocrinol Metab, 24, pp. 351-360 | |
dc.description | Ma, Z.A., Zhao, Z., Turk, J., Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus (2012) Exp Diabetes Res, p. 703538 | |
dc.description | Han, X., Yang, J., Yang, K., Zhao, Z., Abendschein, D.R., Gross, R.W., Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study (2007) Biochemistry, 46, pp. 6417-6428 | |
dc.description | Chicco, A.J., Sparagna, G.C., Role of cardiolipin alterations in mitochondrial dysfunction and disease (2007) Am J Physiol Cell Physiol, 292, pp. C33-C44 | |
dc.description | Bao, S., Song, H., Tan, M., Wohltmann, M., Ladenson, J.H., Turk, J., Group VIB Phospholipase A (2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents (2012) Oxid Med Cell Longev, p. 989372 | |
dc.description | Kim, C.H., Vaziri, N.D., Rodriguez-Iturbe, B., Integrin expression and H2O2 production in circulating and splenic leukocytes of obese rats (2007) Obesity (Silver Spring), 15, pp. 2209-2216 | |
dc.description | Barcellos-de-Souza, P., Moraes, J.A., De-Freitas-Junior, J.C., Morgado-Diaz, J.A., Barja-Fidalgo, C., Arruda, M.A., Heme modulates intestinal epithelial cell activation: Involvement of NADPHox-derived ROS signaling (2012) Am J Physiol Cell Physiol, 304, pp. C170-C179 | |
dc.description | Gauss, K.A., Nelson-Overton, L.K., Siemsen, D.W., Gao, Y., DeLeo, F.R., Quinn, M.T., Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha (2007) J Leukoc Biol, 82, pp. 729-741 | |
dc.description | Hidalgo, C., Donoso, P., Crosstalk between calcium and redox signaling: From molecular mechanisms to health implications (2008) Antioxid Redox Signal, 10, pp. 1275-1312 | |
dc.description | Hidalgo, C., Donoso, P., Carrasco, M.A., The ryanodine receptors Ca2+ release channels: Cellular redox sensors? (2005) IUBMB Life, 57, pp. 315-322 | |
dc.description | Zong, H., Ward, M., Stitt, A.W., AGEs, RAGE, and diabetic retinopathy (2011) Curr Diab Rep, 11, pp. 244-252 | |
dc.description | Giacco, F., Brownlee, M., Oxidative stress and diabetic complications (2010) Circ Res, 107, pp. 1058-1070 | |
dc.description | Barlovic, D.P., Soro-Paavonen, A., Jandeleit-Dahm, K.A., RAGE biology, atherosclerosis and diabetes (2011) Clin Sci (Lond), 121, pp. 43-55 | |
dc.description | He, C.J., Koschinsky, T., Buenting, C., Vlassara, H., Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE (2001) Mol Med, 7, pp. 159-168 | |
dc.description | Peter-Katalinic, J., Fischer, W., Alpha-d-glucopyranosyl-, d-alanyl- and l-lysylcardiolipin from gram-positive bacteria: Analysis by fast atom bombardment mass spectrometry (1998) J Lipid Res, 39, pp. 2286-2292 | |
dc.language | en | |
dc.publisher | Informa Healthcare | |
dc.relation | Free Radical Research | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Oxidative Stress And Susceptibility To Mitochondrial Permeability Transition Precedes The Onset Of Diabetes In Autoimmune Non-obese Diabetic Mice | |
dc.type | Artículos de revistas | |