Artículos de revistas
Ionic Transacetalization With Acylium Ions: A Class-selective And Structurally Diagnostic Reaction For Cyclic Acetals Performed Under Unique Electrospray And Atmospheric Pressure Chemical Ionization In-source Ion-molecule Reaction Conditions
Registration in:
Analytical Chemistry. , v. 75, n. 17, p. 4701 - 4709, 2003.
32700
10.1021/ac0344384
2-s2.0-0041837180
Author
Meurer E.C.
Sabino A.A.
Eberlin M.N.
Institutions
Abstract
Ionic transacetalization of cyclic acetals with the gaseous (CH 3)2NCO+ acylium ion has been performed under unique in-source ion-molecule reaction (in-source IMR) conditions of electrospray (ESI) and atmospheric pressure chemical ionization (APCI). In-source IMR under ESI and APCI greatly expands the range of neutral molecules that can be brought to the gas phase to react by ionic transacetalization, a general, class-selective and structurally diagnostic reaction for cyclic acetals (Moraes, L A. B.; Gozzo, F. C.; Vainiotalo, P.; Eberlin, M. N. J. Org. Chem. 1997, 62, 5096). Heavier, more polar, and less volatile cyclic acetals than those previously employed in quadrupole collision cells are shown to react efficiently by ionic transacetalization under the ESI and APCI in-source IMR conditions. Tetramethylurea (TMU) acts as an efficient dopant, being co-injected with the acetal in either benzene, toluene, methanol, or water/methanol solutions. Under APCI or ESI, the basic TMU dopant is protonated preferentially, and the labile protonated TMU then undergoes dissociation to (CH3)2NCO+, the least acidic and the most transacetalization-reactive acylium ion so far tested. Under the relatively high-pressure, low-energy collision conditions set to favor associative reactions, (CH3)2NCO+ reacts competitively both with TMU to form acylated TMU and with the acetal via ionic transacetalization to form the respective cyclic ionic acetals. Spectrum subtraction removes the ionic products of the dopant (TMU) self-reactions, thus providing clean ion-molecule reaction product ion mass spectra, which are used for the selective, structurally diagnostic detection of cyclic acetals. Information on ring substituents comes from characteristic mass shifts resulting from aldehyde/ketone by acylium ion replacement. Enhanced selectivity in structural characterization or chemical recognition for cyclic acetal monitoring is gained by performing on-line collision-induced dissociation via tandem mass spectrometric experiments. Most cyclic ionic acetals dissociate exclusively or nearly exclusively to re-form the reactant (CH3) 2-NCO+ acylium ion whereas the presence of additional functional groups with increased structural complexity tends to favor other specific but likewise selective dissociation channels. 75 17 4701 4709 Carol, D.I., Dzidic, I., Stillwell, R.N., Haegele, K.D., Horning, M.G., (1975) Anal. Chem., 47, p. 2369 Robb, D.B., Covey, T.R., Bruins, A.P., (2000) Anal. Chem., 72, p. 3653 Kauppila, T.J., Kuuranne, T., Meurer, E.C., Eberlin, M.N., Kotiaho, T., Kostiainen, R., (2002) Anal. Chem., 74, p. 5470 Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B., (1985) Anal. Chem., 57, p. 675 Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., (1989) Science, 246, p. 64 Cole, R.B., (1997) Electrospray Ionization Mass Spectroscopy, , John Wiley, Sons Inc.: New York Karas, M., Hillenkamp, F., (1988) Anal. Chem., 60, p. 2299 Aramendia, M.A., Boraú, V., Garcia, I., Jimenéz, C., Lafont, F., Marinas, J.M., Porras, A., Urbano, F.J., (1995) J. Mass Spectrom., pp. S153 Kerwin, J.L., Wiens, A.M., Ericsson, L.H., (1996) J. Mass Spectrom., 31, p. 184 Kotiaho, T., Eberlin, M.N., Vainiotalo, P., Kostiainen, R., (2000) J. Am. Soc. Mass Spectrom., 11, p. 526 Wolfender, J.L., Waridel, P., Ndjoko, K., Hobby, K.R., Major, H.J., Hostettmann, K., (2000) Analusis, 28, p. 895 Potterat, O., Wagner, K., Haag, H., (2000) J. Chromatogr., A, 872, p. 85 Cooks, R.G., Zhang, D., Koch, K.J., Gozzo, F.C., Eberlin, M.N., (2001) Anal. Chem., 73, p. 3646 Rioli, V., Gozzo, F.C., Shida, C.S., Krieger, J.E., Heimann, A.S., Linardi, A., Almeida, P.C., Ferro, E.S., (2003) J. Biol. Chem., 278, p. 8547 Koch, K.J., Gozzo, F.C., Nanita, S., Eberlin, M.N., Cooks, R.G., (2002) Angew. Chem., Int. Ed., 41, p. 1721 Colton, R., D'Agostinho, A., Traeger, J.C., (1995) Mass Spectrom. Rev., 14, p. 79 Eberlin, M.N., Tomazela, D.M., Gozzo, F.C., Mayer, I., Engelmann, F.M., Araki, K., Toma, H.E., Inorg. Chem., , in press Fuerstenau, S.D., Benner, W.H., Thomas, J.J., Brugidou, C., Bothner, B., Siuzdak, G., (2001) Angew. Chem., 40, p. 542 Bristow, A.W.T., Nichols, W.F., Webb, K.S., Conway, B., (2002) Rapid Commun. Mass Spectrom., 16, p. 2374 Holmes, J.L., (1985) Org. Mass Spectrom., 20, p. 169 Levsen, K., Schwarz, H., (1983) Mass Spectrom. Rev., 2, p. 77 Brodbelt, J.S., (1997) Mass Spectrom. Rev., 16, p. 91 Eberlin, M.N., (1997) Mass Spectrom. Rev., 16, p. 113 Williamson, B.L., Creaser, C.S., (1998) Eur. Mass Spectrom., 4, p. 103 Gerbaux, P., Haverbeke, Y.V., Flammang, R., (1998) Int. J. Mass Spectrom., 184, p. 39 Wang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213 Cacace, F., De Petris, G., Pepi, F., Rosi, M., Sgamellotti, A., (1999) Angew. Chem., Int. Ed., 38, p. 2408 Frank, A.J., Turecek, F., (1999) J. Phys. Chem. A, 103, p. 5348 Brönstrup, M., Schröder, D., Schwarz, H., (1999) Organometallics, 18, p. 1939 O'Hair, R.A.J., Andrautsopoulos, N.K., (2000) Org. Lett., 2, p. 2567 Moraes, L.A.B., Gozzo, F.C., Laali, K.K., Eberlin, M.N., (2000) J. Am. Chem. Soc., 122, p. 7776 D'Oca, M.G.M., Moares, L.A.B., Pilli, R.A., Eberlin, M.N., (2001) J. Org. Chem., 35, p. 2088 Ramirez-Arizmendi, L.E., Yu, Y.Q., Kenttämaa, H.I., (1999) J. Am. Soc. Mass Spectrom., 10, p. 379 Steiner, V., Daoust-Maleval, I., Tabet, J.C., (2000) Int. J. Mass Spectrom., 196, p. 121 Colorado, A., Barket, D.J., Hurst, J.M., Shepson, P.B., (1998) Anal. Chem., 70, p. 5129 Sharifi, M., Einhorn, J., (1999) Int. J. Mass Spectrom., 191, p. 253 Sparrapan, R., Mendes, M.A., Carvalho, M., Eberlin, M.N., (2000) Chem. Eur. J., 6, p. 321 Carvalho, M., Gozzo, F.C., Mendes, M.A., Sparrapan, R., Kascheres, C., Eberlin, M.N., (1998) Chem. Eur. J., 4, p. 1161 Augusti, R., Gozzo, F.C., Moraes, L.A.B., Sparrapan, R., Eberlin, M.N., (1998) J. Org. Chem., 63, p. 4889 Meurer, E.C., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 210, p. 469 Gozzo, F.C., Ifa, D.R., Eberlin, M.N., (2000) J. Org. Chem., 65, p. 3920 Chatfield, D.A., Bursey, M.M., (1976) J. Am. Chem. Soc., 98, p. 6492 Staley, R.H., Wieting, R.D., Beauchamp, J.L., (1977) J. Am. Chem. Soc., 99, p. 5964 Kim, J.K., Caserio, M.C., (1982) J. Am. Chem. Soc., 104, p. 4624 Paradisi, C., Kenttämaa, H.I., Le, Q.T., Caserio, M.C., (1988) Org. Mass Spectrom., 23, p. 521 Creaser, C.S., Williamson, B.L., (1996) J Chem. Soc., Perkin Trans. 2, 427 Eberlin, M.N., Cooks, R.G., (1993) J. Am. Chem. Soc., 115, p. 9226 Meurer, E.C., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 146 Lemos, A.A., Sparrapan, R., Eberlin, M.N., (2003) J. Mass Spectrom., 38, p. 305 Meurer, E.C., Moraes, L.A.B., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 212, p. 445 Moraes, L.A.B., Eberlin, M.N., (1998) J. Am. Chem. Soc., 120, p. 11136 Eberlin, M.N., Cooks, R.G., Zheng, X., Chen, H., Tao, A., Chem. Rev., , in press Eberlin, M.N., Cooks, R.G., (1993) Org. Mass Spectrom., 28, p. 679 Juliano, V.F., Gozzo, F.C., Eberlin, M.N., Kascheres, C., Lago, C.L., (1996) Anal. Chem., 68, p. 1328 Moraes, L.A.B., Eberlin, M.N., (2000) J. Am. Soc. Mass Spectrom., 11, p. 697 Moraes, L.A.B., Gozzo, F.C., Eberlin, M.N., Vainiotalo, P., (1997) J. Org. Chem., 62, p. 5096 Sparrapan, R., Mendes, M.A., Eberlin, M.N., (2000) J. Mass Spectrom., 35, p. 189 Moraes, L.A.B., Mendes, M.A., Sparrapan, R., Eberlin, M.N., (2001) J. Am. Soc. Mass Spectrom., 12, p. 14 Wang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213 Sabino, A.A., Pilli, R.A., (2002) Tetrahedron Lett., 43, p. 2819 Moraes, L.A.B., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 162