dc.creatorMeurer E.C.
dc.creatorSabino A.A.
dc.creatorEberlin M.N.
dc.date2003
dc.date2015-06-30T17:26:43Z
dc.date2015-11-26T15:38:37Z
dc.date2015-06-30T17:26:43Z
dc.date2015-11-26T15:38:37Z
dc.date.accessioned2018-03-28T22:47:08Z
dc.date.available2018-03-28T22:47:08Z
dc.identifier
dc.identifierAnalytical Chemistry. , v. 75, n. 17, p. 4701 - 4709, 2003.
dc.identifier32700
dc.identifier10.1021/ac0344384
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0041837180&partnerID=40&md5=256fd48b558989f2287c2dc2d88de6e6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102003
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102003
dc.identifier2-s2.0-0041837180
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263948
dc.descriptionIonic transacetalization of cyclic acetals with the gaseous (CH 3)2NCO+ acylium ion has been performed under unique in-source ion-molecule reaction (in-source IMR) conditions of electrospray (ESI) and atmospheric pressure chemical ionization (APCI). In-source IMR under ESI and APCI greatly expands the range of neutral molecules that can be brought to the gas phase to react by ionic transacetalization, a general, class-selective and structurally diagnostic reaction for cyclic acetals (Moraes, L A. B.; Gozzo, F. C.; Vainiotalo, P.; Eberlin, M. N. J. Org. Chem. 1997, 62, 5096). Heavier, more polar, and less volatile cyclic acetals than those previously employed in quadrupole collision cells are shown to react efficiently by ionic transacetalization under the ESI and APCI in-source IMR conditions. Tetramethylurea (TMU) acts as an efficient dopant, being co-injected with the acetal in either benzene, toluene, methanol, or water/methanol solutions. Under APCI or ESI, the basic TMU dopant is protonated preferentially, and the labile protonated TMU then undergoes dissociation to (CH3)2NCO+, the least acidic and the most transacetalization-reactive acylium ion so far tested. Under the relatively high-pressure, low-energy collision conditions set to favor associative reactions, (CH3)2NCO+ reacts competitively both with TMU to form acylated TMU and with the acetal via ionic transacetalization to form the respective cyclic ionic acetals. Spectrum subtraction removes the ionic products of the dopant (TMU) self-reactions, thus providing clean ion-molecule reaction product ion mass spectra, which are used for the selective, structurally diagnostic detection of cyclic acetals. Information on ring substituents comes from characteristic mass shifts resulting from aldehyde/ketone by acylium ion replacement. Enhanced selectivity in structural characterization or chemical recognition for cyclic acetal monitoring is gained by performing on-line collision-induced dissociation via tandem mass spectrometric experiments. Most cyclic ionic acetals dissociate exclusively or nearly exclusively to re-form the reactant (CH3) 2-NCO+ acylium ion whereas the presence of additional functional groups with increased structural complexity tends to favor other specific but likewise selective dissociation channels.
dc.description75
dc.description17
dc.description4701
dc.description4709
dc.descriptionCarol, D.I., Dzidic, I., Stillwell, R.N., Haegele, K.D., Horning, M.G., (1975) Anal. Chem., 47, p. 2369
dc.descriptionRobb, D.B., Covey, T.R., Bruins, A.P., (2000) Anal. Chem., 72, p. 3653
dc.descriptionKauppila, T.J., Kuuranne, T., Meurer, E.C., Eberlin, M.N., Kotiaho, T., Kostiainen, R., (2002) Anal. Chem., 74, p. 5470
dc.descriptionWhitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B., (1985) Anal. Chem., 57, p. 675
dc.descriptionFenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., (1989) Science, 246, p. 64
dc.descriptionCole, R.B., (1997) Electrospray Ionization Mass Spectroscopy, , John Wiley, Sons Inc.: New York
dc.descriptionKaras, M., Hillenkamp, F., (1988) Anal. Chem., 60, p. 2299
dc.descriptionAramendia, M.A., Boraú, V., Garcia, I., Jimenéz, C., Lafont, F., Marinas, J.M., Porras, A., Urbano, F.J., (1995) J. Mass Spectrom., pp. S153
dc.descriptionKerwin, J.L., Wiens, A.M., Ericsson, L.H., (1996) J. Mass Spectrom., 31, p. 184
dc.descriptionKotiaho, T., Eberlin, M.N., Vainiotalo, P., Kostiainen, R., (2000) J. Am. Soc. Mass Spectrom., 11, p. 526
dc.descriptionWolfender, J.L., Waridel, P., Ndjoko, K., Hobby, K.R., Major, H.J., Hostettmann, K., (2000) Analusis, 28, p. 895
dc.descriptionPotterat, O., Wagner, K., Haag, H., (2000) J. Chromatogr., A, 872, p. 85
dc.descriptionCooks, R.G., Zhang, D., Koch, K.J., Gozzo, F.C., Eberlin, M.N., (2001) Anal. Chem., 73, p. 3646
dc.descriptionRioli, V., Gozzo, F.C., Shida, C.S., Krieger, J.E., Heimann, A.S., Linardi, A., Almeida, P.C., Ferro, E.S., (2003) J. Biol. Chem., 278, p. 8547
dc.descriptionKoch, K.J., Gozzo, F.C., Nanita, S., Eberlin, M.N., Cooks, R.G., (2002) Angew. Chem., Int. Ed., 41, p. 1721
dc.descriptionColton, R., D'Agostinho, A., Traeger, J.C., (1995) Mass Spectrom. Rev., 14, p. 79
dc.descriptionEberlin, M.N., Tomazela, D.M., Gozzo, F.C., Mayer, I., Engelmann, F.M., Araki, K., Toma, H.E., Inorg. Chem., , in press
dc.descriptionFuerstenau, S.D., Benner, W.H., Thomas, J.J., Brugidou, C., Bothner, B., Siuzdak, G., (2001) Angew. Chem., 40, p. 542
dc.descriptionBristow, A.W.T., Nichols, W.F., Webb, K.S., Conway, B., (2002) Rapid Commun. Mass Spectrom., 16, p. 2374
dc.descriptionHolmes, J.L., (1985) Org. Mass Spectrom., 20, p. 169
dc.descriptionLevsen, K., Schwarz, H., (1983) Mass Spectrom. Rev., 2, p. 77
dc.descriptionBrodbelt, J.S., (1997) Mass Spectrom. Rev., 16, p. 91
dc.descriptionEberlin, M.N., (1997) Mass Spectrom. Rev., 16, p. 113
dc.descriptionWilliamson, B.L., Creaser, C.S., (1998) Eur. Mass Spectrom., 4, p. 103
dc.descriptionGerbaux, P., Haverbeke, Y.V., Flammang, R., (1998) Int. J. Mass Spectrom., 184, p. 39
dc.descriptionWang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213
dc.descriptionCacace, F., De Petris, G., Pepi, F., Rosi, M., Sgamellotti, A., (1999) Angew. Chem., Int. Ed., 38, p. 2408
dc.descriptionFrank, A.J., Turecek, F., (1999) J. Phys. Chem. A, 103, p. 5348
dc.descriptionBrönstrup, M., Schröder, D., Schwarz, H., (1999) Organometallics, 18, p. 1939
dc.descriptionO'Hair, R.A.J., Andrautsopoulos, N.K., (2000) Org. Lett., 2, p. 2567
dc.descriptionMoraes, L.A.B., Gozzo, F.C., Laali, K.K., Eberlin, M.N., (2000) J. Am. Chem. Soc., 122, p. 7776
dc.descriptionD'Oca, M.G.M., Moares, L.A.B., Pilli, R.A., Eberlin, M.N., (2001) J. Org. Chem., 35, p. 2088
dc.descriptionRamirez-Arizmendi, L.E., Yu, Y.Q., Kenttämaa, H.I., (1999) J. Am. Soc. Mass Spectrom., 10, p. 379
dc.descriptionSteiner, V., Daoust-Maleval, I., Tabet, J.C., (2000) Int. J. Mass Spectrom., 196, p. 121
dc.descriptionColorado, A., Barket, D.J., Hurst, J.M., Shepson, P.B., (1998) Anal. Chem., 70, p. 5129
dc.descriptionSharifi, M., Einhorn, J., (1999) Int. J. Mass Spectrom., 191, p. 253
dc.descriptionSparrapan, R., Mendes, M.A., Carvalho, M., Eberlin, M.N., (2000) Chem. Eur. J., 6, p. 321
dc.descriptionCarvalho, M., Gozzo, F.C., Mendes, M.A., Sparrapan, R., Kascheres, C., Eberlin, M.N., (1998) Chem. Eur. J., 4, p. 1161
dc.descriptionAugusti, R., Gozzo, F.C., Moraes, L.A.B., Sparrapan, R., Eberlin, M.N., (1998) J. Org. Chem., 63, p. 4889
dc.descriptionMeurer, E.C., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 210, p. 469
dc.descriptionGozzo, F.C., Ifa, D.R., Eberlin, M.N., (2000) J. Org. Chem., 65, p. 3920
dc.descriptionChatfield, D.A., Bursey, M.M., (1976) J. Am. Chem. Soc., 98, p. 6492
dc.descriptionStaley, R.H., Wieting, R.D., Beauchamp, J.L., (1977) J. Am. Chem. Soc., 99, p. 5964
dc.descriptionKim, J.K., Caserio, M.C., (1982) J. Am. Chem. Soc., 104, p. 4624
dc.descriptionParadisi, C., Kenttämaa, H.I., Le, Q.T., Caserio, M.C., (1988) Org. Mass Spectrom., 23, p. 521
dc.descriptionCreaser, C.S., Williamson, B.L., (1996) J Chem. Soc., Perkin Trans. 2, 427
dc.descriptionEberlin, M.N., Cooks, R.G., (1993) J. Am. Chem. Soc., 115, p. 9226
dc.descriptionMeurer, E.C., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 146
dc.descriptionLemos, A.A., Sparrapan, R., Eberlin, M.N., (2003) J. Mass Spectrom., 38, p. 305
dc.descriptionMeurer, E.C., Moraes, L.A.B., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 212, p. 445
dc.descriptionMoraes, L.A.B., Eberlin, M.N., (1998) J. Am. Chem. Soc., 120, p. 11136
dc.descriptionEberlin, M.N., Cooks, R.G., Zheng, X., Chen, H., Tao, A., Chem. Rev., , in press
dc.descriptionEberlin, M.N., Cooks, R.G., (1993) Org. Mass Spectrom., 28, p. 679
dc.descriptionJuliano, V.F., Gozzo, F.C., Eberlin, M.N., Kascheres, C., Lago, C.L., (1996) Anal. Chem., 68, p. 1328
dc.descriptionMoraes, L.A.B., Eberlin, M.N., (2000) J. Am. Soc. Mass Spectrom., 11, p. 697
dc.descriptionMoraes, L.A.B., Gozzo, F.C., Eberlin, M.N., Vainiotalo, P., (1997) J. Org. Chem., 62, p. 5096
dc.descriptionSparrapan, R., Mendes, M.A., Eberlin, M.N., (2000) J. Mass Spectrom., 35, p. 189
dc.descriptionMoraes, L.A.B., Mendes, M.A., Sparrapan, R., Eberlin, M.N., (2001) J. Am. Soc. Mass Spectrom., 12, p. 14
dc.descriptionWang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213
dc.descriptionSabino, A.A., Pilli, R.A., (2002) Tetrahedron Lett., 43, p. 2819
dc.descriptionMoraes, L.A.B., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 162
dc.languageen
dc.publisher
dc.relationAnalytical Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleIonic Transacetalization With Acylium Ions: A Class-selective And Structurally Diagnostic Reaction For Cyclic Acetals Performed Under Unique Electrospray And Atmospheric Pressure Chemical Ionization In-source Ion-molecule Reaction Conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución