Artículos de revistas
On The Spectrum Of The Twisted Dolbeault Laplacian Over Kähler Manifolds
Registro en:
Differential Geometry And Its Application. , v. 27, n. 3, p. 412 - 419, 2009.
9262245
10.1016/j.difgeo.2008.10.018
2-s2.0-64449085714
Autor
Jardim M.
Leao R.F.
Institución
Resumen
We use Dirac operator techniques to a establish sharp lower bound for the first eigenvalue of the Dolbeault Laplacian twisted by Hermitian-Einstein connections on vector bundles of negative degree over compact Kähler manifolds. © 2008 Elsevier B.V. All rights reserved. 27 3 412 419 Alexandrov, B., Grantcharov, G., Ivanov, S., The Dolbeault operator on Hermitian spin surfaces (2001) Ann. Inst. Fourier, 51, pp. 221-235 Almorox, A.L., Tejero Prieto, C., Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces (2006) J. Geom. Phys., 56, pp. 2069-2091 Atiyah, M., Eigenvalues of the Dirac operator (1985) Lecture Notes in Math., 1111, pp. 251-260. , Workshop. Bonn, 1984, Springer, Berlin Baum, H., Eigenvalues estimates for Dirac operators coupled to instantons (1994) Ann. Global Anal. Geom., 12, pp. 193-209 Bourguignon, J.P., Li, P., Yau, S.T., Upper bound for the first eigenvalue of algebraic submanifolds (1994) Comment. Math. Helv., 69, pp. 199-207 Colbois, B., El Soufi, A., Eigenvalues of the Laplacian acting on p-forms and metric conformal deformations (2006) Proc. Amer. Math. Soc., 134, pp. 715-721 Donaldson, S.K., Kronheimer, P.B., (1990) The Geometry of Four-Manifolds, , Oxford University Press, New York Friedrich, T., (2000) Dirac Operator in Riemannian Geometry, , American Mathematical Society, Providence, RI Hitchin, N., Harmonic spinors (1974) Adv. Math., 14, pp. 1-55 Kirchberg, K.D., An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature (1986) Ann. Global Anal. Geom., 4, pp. 291-325 Kirchberg, K.D., The first eigenvalue of the Dirac operator on Kähler manifolds (1991) J. Geom. Phys., 7, pp. 449-468 Lawson, H.B., Michelsohn, M.L., Spin Geometry Princeton Mathematical Series, 38. , Princeton University Press Tejero Prieto, C., Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces (2006) Differential Geom. Appl., 24, pp. 288-310