dc.creator | Jardim M. | |
dc.creator | Leao R.F. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:37:09Z | |
dc.date | 2015-11-26T15:38:00Z | |
dc.date | 2015-06-26T13:37:09Z | |
dc.date | 2015-11-26T15:38:00Z | |
dc.date.accessioned | 2018-03-28T22:46:28Z | |
dc.date.available | 2018-03-28T22:46:28Z | |
dc.identifier | | |
dc.identifier | Differential Geometry And Its Application. , v. 27, n. 3, p. 412 - 419, 2009. | |
dc.identifier | 9262245 | |
dc.identifier | 10.1016/j.difgeo.2008.10.018 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-64449085714&partnerID=40&md5=7ef00efe18e2a3eccaf530072cf99a34 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/92698 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/92698 | |
dc.identifier | 2-s2.0-64449085714 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263788 | |
dc.description | We use Dirac operator techniques to a establish sharp lower bound for the first eigenvalue of the Dolbeault Laplacian twisted by Hermitian-Einstein connections on vector bundles of negative degree over compact Kähler manifolds. © 2008 Elsevier B.V. All rights reserved. | |
dc.description | 27 | |
dc.description | 3 | |
dc.description | 412 | |
dc.description | 419 | |
dc.description | Alexandrov, B., Grantcharov, G., Ivanov, S., The Dolbeault operator on Hermitian spin surfaces (2001) Ann. Inst. Fourier, 51, pp. 221-235 | |
dc.description | Almorox, A.L., Tejero Prieto, C., Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces (2006) J. Geom. Phys., 56, pp. 2069-2091 | |
dc.description | Atiyah, M., Eigenvalues of the Dirac operator (1985) Lecture Notes in Math., 1111, pp. 251-260. , Workshop. Bonn, 1984, Springer, Berlin | |
dc.description | Baum, H., Eigenvalues estimates for Dirac operators coupled to instantons (1994) Ann. Global Anal. Geom., 12, pp. 193-209 | |
dc.description | Bourguignon, J.P., Li, P., Yau, S.T., Upper bound for the first eigenvalue of algebraic submanifolds (1994) Comment. Math. Helv., 69, pp. 199-207 | |
dc.description | Colbois, B., El Soufi, A., Eigenvalues of the Laplacian acting on p-forms and metric conformal deformations (2006) Proc. Amer. Math. Soc., 134, pp. 715-721 | |
dc.description | Donaldson, S.K., Kronheimer, P.B., (1990) The Geometry of Four-Manifolds, , Oxford University Press, New York | |
dc.description | Friedrich, T., (2000) Dirac Operator in Riemannian Geometry, , American Mathematical Society, Providence, RI | |
dc.description | Hitchin, N., Harmonic spinors (1974) Adv. Math., 14, pp. 1-55 | |
dc.description | Kirchberg, K.D., An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature (1986) Ann. Global Anal. Geom., 4, pp. 291-325 | |
dc.description | Kirchberg, K.D., The first eigenvalue of the Dirac operator on Kähler manifolds (1991) J. Geom. Phys., 7, pp. 449-468 | |
dc.description | Lawson, H.B., Michelsohn, M.L., Spin Geometry Princeton Mathematical Series, 38. , Princeton University Press | |
dc.description | Tejero Prieto, C., Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces (2006) Differential Geom. Appl., 24, pp. 288-310 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Differential Geometry and its Application | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | On The Spectrum Of The Twisted Dolbeault Laplacian Over Kähler Manifolds | |
dc.type | Artículos de revistas | |