dc.creatorJardim M.
dc.creatorLeao R.F.
dc.date2009
dc.date2015-06-26T13:37:09Z
dc.date2015-11-26T15:38:00Z
dc.date2015-06-26T13:37:09Z
dc.date2015-11-26T15:38:00Z
dc.date.accessioned2018-03-28T22:46:28Z
dc.date.available2018-03-28T22:46:28Z
dc.identifier
dc.identifierDifferential Geometry And Its Application. , v. 27, n. 3, p. 412 - 419, 2009.
dc.identifier9262245
dc.identifier10.1016/j.difgeo.2008.10.018
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-64449085714&partnerID=40&md5=7ef00efe18e2a3eccaf530072cf99a34
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92698
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92698
dc.identifier2-s2.0-64449085714
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263788
dc.descriptionWe use Dirac operator techniques to a establish sharp lower bound for the first eigenvalue of the Dolbeault Laplacian twisted by Hermitian-Einstein connections on vector bundles of negative degree over compact Kähler manifolds. © 2008 Elsevier B.V. All rights reserved.
dc.description27
dc.description3
dc.description412
dc.description419
dc.descriptionAlexandrov, B., Grantcharov, G., Ivanov, S., The Dolbeault operator on Hermitian spin surfaces (2001) Ann. Inst. Fourier, 51, pp. 221-235
dc.descriptionAlmorox, A.L., Tejero Prieto, C., Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces (2006) J. Geom. Phys., 56, pp. 2069-2091
dc.descriptionAtiyah, M., Eigenvalues of the Dirac operator (1985) Lecture Notes in Math., 1111, pp. 251-260. , Workshop. Bonn, 1984, Springer, Berlin
dc.descriptionBaum, H., Eigenvalues estimates for Dirac operators coupled to instantons (1994) Ann. Global Anal. Geom., 12, pp. 193-209
dc.descriptionBourguignon, J.P., Li, P., Yau, S.T., Upper bound for the first eigenvalue of algebraic submanifolds (1994) Comment. Math. Helv., 69, pp. 199-207
dc.descriptionColbois, B., El Soufi, A., Eigenvalues of the Laplacian acting on p-forms and metric conformal deformations (2006) Proc. Amer. Math. Soc., 134, pp. 715-721
dc.descriptionDonaldson, S.K., Kronheimer, P.B., (1990) The Geometry of Four-Manifolds, , Oxford University Press, New York
dc.descriptionFriedrich, T., (2000) Dirac Operator in Riemannian Geometry, , American Mathematical Society, Providence, RI
dc.descriptionHitchin, N., Harmonic spinors (1974) Adv. Math., 14, pp. 1-55
dc.descriptionKirchberg, K.D., An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature (1986) Ann. Global Anal. Geom., 4, pp. 291-325
dc.descriptionKirchberg, K.D., The first eigenvalue of the Dirac operator on Kähler manifolds (1991) J. Geom. Phys., 7, pp. 449-468
dc.descriptionLawson, H.B., Michelsohn, M.L., Spin Geometry Princeton Mathematical Series, 38. , Princeton University Press
dc.descriptionTejero Prieto, C., Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces (2006) Differential Geom. Appl., 24, pp. 288-310
dc.languageen
dc.publisher
dc.relationDifferential Geometry and its Application
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Spectrum Of The Twisted Dolbeault Laplacian Over Kähler Manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución