Artículos de revistas
Evaluation Of Magnetorheological Suspensions Based On Carbonyl Iron Powders
Registro en:
Journal Of Intelligent Material Systems And Structures. , v. 13, n. 7-8, p. 471 - 478, 2002.
1045389X
2-s2.0-0041346437
Autor
Bombard A.J.F.
Knobel M.
Alcantara M.R.
Joekes I.
Institución
Resumen
The particle size distribution and magnetic susceptibility of some commercial carbonyl iron powders (code names CC, CS, HQ, OX and SM) were measured. The particle size of the powders increases as follows: HQ < SM < CC ≈ OX < CS. The magnetic susceptibility increases in the order: HQ ≈ OX ≈ SM ≈ CC ≈ CS. Magnetorheological suspensions (MRS) with 66% w/w of iron were prepared and their rheological properties were evaluated at no field, 100, 200 and 300 Oe. The yield stress under 300 Oe measured with strain-stress curves increases in the order: HQ ≈ OX < SM < CC < CS, showing direct correlation with the susceptibility. The plastic viscosity without field increases in the order: CS < CC < OX < SM < HQ, an inverse correlation with particle size. These results show that the particle size and/or size distribution can be another important property of the powders, together with magnetic susceptibility on the formulation of improved MRS. 13 7-8 471 478 Barnes, H.A., The yield stress - a review or 'παντα ρει - Everything flows? (1999) J. Non-Newtonian Fluid Mech., 81 (1-2), pp. 133-178 Carlson, J.D., Catanzarite, D.M., St. Clair, K.A., Commercial magneto-rheological fluid devices (1996) Int. J. Modern Physics B, 10 (23-24), pp. 2857-2865 De Gans, B.J., Duin, N.J., Van Den Ende, D., Mellema, J., The influence of particle size on the magnetorheological properties of an inverse ferrofluid (2000) J. Chem. Phys., 113 (5), pp. 2032-2042 Farris, R.J., Prediction of the viscosity of multimodal suspensions from unimodal viscosity data (1968) Trans. Soc. Rheol., 12 (2), pp. 281-301 Foister, R.T., Magnetorheological fluids (1997), US Patent 5,667,715 - September 16Ginder, J.M., Davis, L.C., Shear stresses in magnetorheological fluids: Role of magnetic saturation (1994) Appl. Phys. Lett., 65 (26), pp. 3410-3412 Lemaire, E., Meunier, A., Bossis, G., Liu, J., Felt, D., Bashtovoi, P., Matoussevitch, N., Influence of the particle size on the rheology of magnetorheological fluids (1995) J. Rheology, 39 (5), pp. 1011-1020 Ota, M., Miyamoto, T., Optimum particle size distribution of an electrorheological fluid (1994) J. Appl. Phys., 76 (9), pp. 5528-5532 Popplewell, J., Rosenweig, R.E., Magnetorheological fluid composites (1996) J. Phys. D: Appl. Phys., 29 (9), pp. 2297-2303 Rabinow, J., The magnetic fluid clutch (1948) AIEE Trans., 67 (PART II), pp. 1308-1315 Rabinow, J., Magnetic fluid torque and force transmitting device (1951), US Patent 2,575,360 - November 20Rosenweig, R.E., On magnetorheology and electrorheology as states of unsymmetric stress (1995) J. Rheology, 39 (1), pp. 179-192 Saunders, F.L., Rheological properties of monodisperse latex systems - I. Concentration dependence of relative viscosity (1961) J. Colloid Sci., 16 (1), pp. 13-22 Shih, Y.-H., Conrad, H., Influence of particle size on the dynamic strength of electrorheological fluids (1994) Int. J. Modern Physics B, 8 (20-21), pp. 2835-2853 Shulman, Z.P., Kordonsky, V.I., Zaltsgender, E.A., Prokhorov, I.V., Khusid, B.M., Demchuk, S.A., Structure, physical properties and dynamics of magnetorheological suspensions (1986) Int. J. Multiphase Flow, 12 (6), pp. 935-955 Weiss, K.D., Carlson, J.D., Nixon, D.A., Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid (2000), US Patent 6,027,664 - February 22