dc.creatorBombard A.J.F.
dc.creatorKnobel M.
dc.creatorAlcantara M.R.
dc.creatorJoekes I.
dc.date2002
dc.date2015-06-30T16:44:44Z
dc.date2015-11-26T15:36:54Z
dc.date2015-06-30T16:44:44Z
dc.date2015-11-26T15:36:54Z
dc.date.accessioned2018-03-28T22:45:23Z
dc.date.available2018-03-28T22:45:23Z
dc.identifier
dc.identifierJournal Of Intelligent Material Systems And Structures. , v. 13, n. 7-8, p. 471 - 478, 2002.
dc.identifier1045389X
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0041346437&partnerID=40&md5=34a291164364e4d421baefa793684aeb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/101884
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/101884
dc.identifier2-s2.0-0041346437
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263544
dc.descriptionThe particle size distribution and magnetic susceptibility of some commercial carbonyl iron powders (code names CC, CS, HQ, OX and SM) were measured. The particle size of the powders increases as follows: HQ < SM < CC ≈ OX < CS. The magnetic susceptibility increases in the order: HQ ≈ OX ≈ SM ≈ CC ≈ CS. Magnetorheological suspensions (MRS) with 66% w/w of iron were prepared and their rheological properties were evaluated at no field, 100, 200 and 300 Oe. The yield stress under 300 Oe measured with strain-stress curves increases in the order: HQ ≈ OX < SM < CC < CS, showing direct correlation with the susceptibility. The plastic viscosity without field increases in the order: CS < CC < OX < SM < HQ, an inverse correlation with particle size. These results show that the particle size and/or size distribution can be another important property of the powders, together with magnetic susceptibility on the formulation of improved MRS.
dc.description13
dc.description7-8
dc.description471
dc.description478
dc.descriptionBarnes, H.A., The yield stress - a review or 'παντα ρει - Everything flows? (1999) J. Non-Newtonian Fluid Mech., 81 (1-2), pp. 133-178
dc.descriptionCarlson, J.D., Catanzarite, D.M., St. Clair, K.A., Commercial magneto-rheological fluid devices (1996) Int. J. Modern Physics B, 10 (23-24), pp. 2857-2865
dc.descriptionDe Gans, B.J., Duin, N.J., Van Den Ende, D., Mellema, J., The influence of particle size on the magnetorheological properties of an inverse ferrofluid (2000) J. Chem. Phys., 113 (5), pp. 2032-2042
dc.descriptionFarris, R.J., Prediction of the viscosity of multimodal suspensions from unimodal viscosity data (1968) Trans. Soc. Rheol., 12 (2), pp. 281-301
dc.descriptionFoister, R.T., Magnetorheological fluids (1997), US Patent 5,667,715 - September 16Ginder, J.M., Davis, L.C., Shear stresses in magnetorheological fluids: Role of magnetic saturation (1994) Appl. Phys. Lett., 65 (26), pp. 3410-3412
dc.descriptionLemaire, E., Meunier, A., Bossis, G., Liu, J., Felt, D., Bashtovoi, P., Matoussevitch, N., Influence of the particle size on the rheology of magnetorheological fluids (1995) J. Rheology, 39 (5), pp. 1011-1020
dc.descriptionOta, M., Miyamoto, T., Optimum particle size distribution of an electrorheological fluid (1994) J. Appl. Phys., 76 (9), pp. 5528-5532
dc.descriptionPopplewell, J., Rosenweig, R.E., Magnetorheological fluid composites (1996) J. Phys. D: Appl. Phys., 29 (9), pp. 2297-2303
dc.descriptionRabinow, J., The magnetic fluid clutch (1948) AIEE Trans., 67 (PART II), pp. 1308-1315
dc.descriptionRabinow, J., Magnetic fluid torque and force transmitting device (1951), US Patent 2,575,360 - November 20Rosenweig, R.E., On magnetorheology and electrorheology as states of unsymmetric stress (1995) J. Rheology, 39 (1), pp. 179-192
dc.descriptionSaunders, F.L., Rheological properties of monodisperse latex systems - I. Concentration dependence of relative viscosity (1961) J. Colloid Sci., 16 (1), pp. 13-22
dc.descriptionShih, Y.-H., Conrad, H., Influence of particle size on the dynamic strength of electrorheological fluids (1994) Int. J. Modern Physics B, 8 (20-21), pp. 2835-2853
dc.descriptionShulman, Z.P., Kordonsky, V.I., Zaltsgender, E.A., Prokhorov, I.V., Khusid, B.M., Demchuk, S.A., Structure, physical properties and dynamics of magnetorheological suspensions (1986) Int. J. Multiphase Flow, 12 (6), pp. 935-955
dc.descriptionWeiss, K.D., Carlson, J.D., Nixon, D.A., Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid (2000), US Patent 6,027,664 - February 22
dc.languageen
dc.publisher
dc.relationJournal of Intelligent Material Systems and Structures
dc.rightsfechado
dc.sourceScopus
dc.titleEvaluation Of Magnetorheological Suspensions Based On Carbonyl Iron Powders
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución