Artículos de revistas
Morphology Of Temperature-sensitive And Ph-responsive Ipn-hydrogels For Application As Biomaterial For Cell Growth [morfologia De Hidrogéis-ipn Termo-sensíveis E Ph-responsivos Para Aplica ção Como Biomaterial Na Cultura De Células]
Registro en:
Polimeros. , v. 19, n. 2, p. 105 - 110, 2009.
1041428
2-s2.0-69549111381
Autor
Rubira A.F.
Muniz E.C.
Guilherme M.R.
Paulino A.T.
Tambourgi E.B.
Institución
Resumen
In the present investigation, hydrogels with pH-responsive and temperature-sensitive properties were obtained by formation of alginate-Ca network inside the PNIPAAm network resulting in an interpenetrated network system (IPN). From scanning electron microscopy (SEM) images and water uptake (WU) tests one observed that IPN hydrogels exhibited a drastic shrinking when heated above 30-35°C. The shrinking resulted in decreased average pore size, thus affect the hydrogel morphology significantly. In the pH range studied, IPN hydrogels showed significant pH dependence, which was attributed to the charged alginate groups. The results indicated that the pH-responsiveness and temperature-dependence of alginate and PNIPAAm, respectively, were preserved in IPN hydrogels. In addition, such hydrogels become less deformable when subjected to compressive stress. These hydrogels presented porous morphology that may be tuned by controlling the temperature, and this makes them attractive for applications as biomaterial in cell growth. 19 2 105 110 Wang, X., Spencer, G., (1998) Polymer, 39, p. 2759 Meeuse, B.J.D., (1962) Composition of Cell and Metabolic Products, , University of Washington, Washington Draget, K.I., Skjåk-Braek, G., Smidsrød, O., (1997) Inter. J. Biol. Macromol., 21, p. 47 Halder, A., Maiti, S., Sa, B., (2005) Inter. J. Pharm., 302, p. 84 Shapiro, L., Cohen, S., (1997) Biomaterials, 18, p. 583 Li, S., Wang, X.T., Zhang, X.B., Yang, R.J., Zhang, H.Z., Zhu, L.Z., Hou, X.P., (2002) J. Control. Release, 84, p. 87 Hurteaux, R., Edwards-Lévy, F., Laurent-Maquin, D., Lévy, M.C., (2005) Eur. J. Pharm. Sci., 24, p. 187 Chretien, C., Chaumeil, J.C., (2005) Inter. J. Pharm., 304, p. 18 Liu, L., Sheardown, H., (2005) Biomaterials, 26, p. 233 Cho, J.H., Kim, S.H., Park, K.D., Jung, M.C., Yang, W.I., Han, S.W., Noh, J.Y., Lee, J.W.J.W., (2004) Biomaterials, 25, p. 5743 Kavanagh, C.A., Rochev, Y.A., Gallagher, W.M., Dawson, K.A., Keenan, A.K., (2004) Pharmacol & Therapeutics, 102, p. 1 Guilherme, M.R., Reis, A.V., Rubira, A.F., Muniz, E.C., (2005), www.inpi.gov.br, PI 0503651-8, BrazilGuilherme, M.R., Campese, G.M., Radovanovic, E., Rubira, A.F., Tambourgi, E.B., Muniz, E.C., (2006) J. Membrane Sci., 275, p. 187 Schild, H.G., (1992) Prog. Polym. Sci., 17, p. 163 Takigawa, T., Yamawaki, T., Takahashia, K., Masuda, T., (1997) Polym. Gels Networks, 5, p. 585 Athawale, V.D., Raut, S.S., (2002) Eur. Polym. J., 38, p. 2033 Jin, S.P., Liu, M.Z., Chen, S.L., Bian, F.L., Chen, Y., Wang, B., Zhan, F.L., Liu, S.X., (2007) Acta Physico-Chimica Sinica, 23, p. 438 Teli, S.B., Gokavi, G.S., Aminabhavi, T.M., (2007) Separ. Purif. Tech., 56, p. 150 Shin, Y., Kim, K.S., Kim, B., (2008) Polymer-Korea, 32, p. 421 Biswal, D., Hilt, J.Z., (2006) Polymer, 47, p. 7355 Miyata, T., Asami, N., Uragami, T., (1999) Nature, 399, p. 766 Omichi, H., (1995) Nucl. Instrum. Meth. B, 105, p. 302 Moura, M.R., Rubira, A.F., Muniz, E.C., (2008) Polím. Ciěncia Tecnol, 18, p. 132 Ouwerx, C., Velings, N., Mestdagh, M.M., Axelos, M.A.V., (1998) Polym. Gels Netw, 6, p. 293 Lee, K.Y., Rowley, J.A., Eiselt, P., Moy, E.M., Bouhadir, K.H., Mooney, D.J., (2000) Macromolecules, 33, p. 4291 Paulino, A.T., Campese, G.M., Fávaro, S.L., Guilherme, M.R., Tambourgi, E.B., Muniz, E.C., (2007) E Polymer, 122, p. 1 Moura, M.R., Guilherme, M.R., Campese, G.M., Radovanovic, E., Rubira, A.F., Muniz, E.C., (2005) Eur. Polym. J., 41, p. 2845