Artículos de revistas
Brij Detergents Reveal New Aspects Of Membrane Microdomain In Erythrocytes
Registro en:
Molecular Membrane Biology. Informa Healthcare, v. 31, n. 6, p. 195 - 205, 2014.
9687688
10.3109/09687688.2014.949319
2-s2.0-84907176337
Autor
Casadei B.R.
De Oliveira Carvalho P.
Riske K.A.
Barbosa R.D.M.
De Paula E.
Domingues C.C.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4°C and 37°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs-a detergent that preferentially solubilizes the membrane inner leaflet-while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts. 31 6 195 205 #2010/18516-5; FAPESP; São Paulo Research Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (1998) Official Methods and Recommended Practices of the American Oil Chemists' Society, , American Oil Chemists' Society (AOCS) 5th ed. Champaign (IL): AOCS An, X., Guo, X., Liu, S., Lux, S.E., Baines, A., Gratzer, W., Mohandas, N., Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: Regulation of the interactions by phosphatidylinositol-4,5-bisphosphate (2005) Biochemistry, 44, pp. 10681-10688 An, X., Zhang, X., Debnath, G., Baines, A.J., Mohandas, N., Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins (2006) Biochemistry, 45, pp. 5725-5732 Angelova, M.I., Dimitrov, D.S., Liposome electroformation (1986) Faraday Discuss Chem Soc, 81, pp. 303-311 Beutler, E., West, C., Blume, K.G., The removal of leukocytes and platelets from whole blood (1976) J Lab Clin Med, 88, pp. 328-333 Bezlyepkina, N., Gracià, R.S., Shchelokovskyy, P., Lipowsky, R., Dimova, R., Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol (2013) Biophys J, 104, pp. 1456-1464 Cai, M., Zhao, W., Shang, X., Jiang, J., Ji, H., Tang, Z., Wang, H., Direct evidence of lipid rafts by in situ atomic force microscopy (2012) Small, 8, pp. 1243-12450 Casadei, B.R., Domingues, C.C., De Paula, E., Riske, K.A., Direct visualization of the action of Triton X-100 on giant vesicles of erythrocyte membrane lipids (2014) Biophys J, 106, pp. 2417-2425 Cassera, M.B., Silber, A.M., Gennaro, A.M., Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface an electron paramagnetic resonance (epr) spin label study (2002) Biophys Chem, 99, pp. 117-127 Chen, P.S., Toribara, J.T.Y., Warner, H., Microdetermination of phosphorus (1956) Anal Chem, 28, pp. 1756-1758 Ciana, A., Achilli, C., Hannoush, R.N., Risso, A., Balduini, C., Minetti, G., Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes (2013) Biochim Biophys Acta, 1828, pp. 924-931 Ciana, A., Achilli, C., Balduini, C., Minetti, G., On the association of lipid rafts to the spectrin skeleton in human erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 183-190 Ciana, A., Balduini, C., Minetti, G., Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton (2005) J Biosci, 30, pp. 317-328 Ciana, A., Achilli, C., Minetti, G., Membrane rafts of the human red blood cell (2014) Mol Membr Biol, 31, pp. 47-57 Crepaldi Domingues, C., Ciana, A., Buttafava, A., Balduini, C., De Paula, E., Minetti, G., Resistance of human erythrocyte membranes to Triton X-100 and C12E8 (2009) J Membr Biol, 227, pp. 39-48 Dodge, J.T., Mitchell, C., Hanahan, D.J., The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes (1963) Arch Biochem Biophys, 100, pp. 119-130 Domingues, C.C., Ciana, A., Buttafava, A., Casadei, B.R., Balduini, C., De Paula, E., Minetti, G., Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes (2010) J Membr Biol, 234, pp. 195-205 Folch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipides from animal tissues (1957) J Biol Chem, 226, pp. 497-509 Goni, F., Alonso, A., Bagatolli, L., Brown, R., Marsh, D., Prieto, M., Thewalt, J., Phase diagrams of lipid mixtures relevant to the study of membrane rafts (2008) Biochim Biophys Acta, 1781, pp. 665-684 Hubbell, W.L., McConnell, H.M., Molecular motion in spin-labeled phospholipids and membranes (1971) J Am Chem Soc, 93, pp. 314-326 Ingelmo-Torres, M., Gaus, K., Herms, A., Gonzalez-Moreno, E., Kassan, A., Bosch, M., Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane (2009) Biochem J, 420, pp. 373-381 Koumanov, K., Tessier, C., Momchilova, A., Rainteau, D., Wolf, C., Quinn, P., Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes (2005) Arch Biochem Biophys, 434, pp. 150-158 Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M.P., Edidin, M., Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin (2003) Proc Natl Acad Sci USA, 100, pp. 13964-13969 Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 Lichtenberg, D., Goni, F., Heerklotz, H., Detergent-resistant membranes should not be identified with membrane rafts (2005) Trends Biochem Sci, 30, pp. 430-436 Lingwood, D., Kaiser, H., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes (2009) Biochem Soc Trans, 37, pp. 955-960 Mainali, L., Raguz, M., O'brien, W.J., Subczynski, W.K., Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens (2012) Exp Eye Res, 97, pp. 117-129 Mikhalyov, I., Samsonov, A., Lipid raft detecting in membranes of live erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 1930-1939 Murphy, S.C., Samuel, B.U., Harrison, T., Speicher, K.D., Speicher, D.W., Reid, M.E., Erythrocyte detergent-resistant membrane proteins: Their characterization and selective uptake during malarial infection (2004) Blood, 103, pp. 1920-1928 Nagao, E., Seydel, K.B., Dvorak, J.A., Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection (2002) Exp Parasitol, 102, pp. 57-59 Pathak, P., London, E., Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation (2011) Biophys J, 101, pp. 2417-2425 Pike, L., Lipid rafts: Heterogeneity on the high seas (2004) Biochem J, 378, pp. 281-292 Pike, L., Han, X., Gross, R.W., Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: A shotgun lipidomics study (2005) J Biol Chem, 280, pp. 26796-26804 Quinn, P., A lipid matrix model of membrane raft structure (2010) Prog Lipid Res, 49, pp. 390-406 Rose, H.G., Oklander, M., Improved procedure for the extraction of lipids from human erythrocytes (1965) J Lipid Res, 6, pp. 428-431 Salzer, U., Prohaska, R., Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts (2001) Blood, 97, pp. 1141-1143 Samuel, B.U., Mohandas, N., Harrison, T., McManus, H., Rosse, W., Reid, M., Haldar, K., The role of cholesterol and glycosylphosphatidylinositol- Anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection (2001) J Biol Chem, 276, pp. 29319-29329 Schreier, S., Polnaszek, C.F., Smith, I.C., Spin labels in membranes problems in practice (1978) Biochim Biophys Acta, 515, pp. 395-436 Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K., Resistance of cell membranes to different detergents (2003) Proc Natl Acad Sci USA, 100, pp. 5795-5800 Sheetz, M.P., Integral membrane protein interaction with Triton cytoskeletons of erythrocytes (1979) Biochim Biophys Acta, 557, pp. 122-134 Sheetz, M.P., Singer, S.J., Biological membranes as bilayer couples a molecular mechanism of drug-erythrocyte interactions (1974) Proc Natl Acad Sci USA, 71, pp. 4457-4461 Singer, S.J., Nicolson, G., The fluid mosaic model of the structure of cell membranes (1972) Science, 175, pp. 720-731 Sonnino, S., Prinetti, A., Membrane lipid domains and membrane lipid domain preparations: Are they the same thing? (2008) Trends Glycosci Glycotechnol, 20, pp. 315-340 Sonnino, S., Prinetti, A., Membrane domains and the 'lipid raft' concept (2013) Curr Med Chem, 20, pp. 4-21 Steck, T.L., The organization of proteins in the human red blood cell membrane a review (1974) J Cell Biol, 62, pp. 1-19 Subczynski, W., Raguz, M., Widomska, J., Studying lipid organization in biological membranes using liposomes and EPR spin labeling (2010) Methods Mol Biol, 606, pp. 247-269 Sudbrack, T.P., Archilha, N.L., Itri, R., Riske, K.A., Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs (2011) J Phys Chem B, 115, pp. 269-277 Toledo, M.S., Suzuki, E., Straus, A.H., Takahashi, H.K., Glycolipids from Paracoccidioides brasiliensis. Isolation of a galactofuranose-containing glycolipid reactive with sera of patients with paracoccidioidomycosis (1995) J Med Vet Mycol, 33, pp. 247-251 Waugh, M., Hsuan, J., Preparation of membrane rafts (2009) Methods Mol Biol, 462, pp. 403-414 Yu, J., Fischman, D.A., Steck, T.L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents (1973) J Supramol Struct, 1, pp. 233-248