dc.creatorCasadei B.R.
dc.creatorDe Oliveira Carvalho P.
dc.creatorRiske K.A.
dc.creatorBarbosa R.D.M.
dc.creatorDe Paula E.
dc.creatorDomingues C.C.
dc.date2014
dc.date2015-06-25T17:50:41Z
dc.date2015-11-26T15:35:26Z
dc.date2015-06-25T17:50:41Z
dc.date2015-11-26T15:35:26Z
dc.date.accessioned2018-03-28T22:44:00Z
dc.date.available2018-03-28T22:44:00Z
dc.identifier
dc.identifierMolecular Membrane Biology. Informa Healthcare, v. 31, n. 6, p. 195 - 205, 2014.
dc.identifier9687688
dc.identifier10.3109/09687688.2014.949319
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907176337&partnerID=40&md5=6bb250dcc4973c8a8b71d968ff9871f6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85889
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85889
dc.identifier2-s2.0-84907176337
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1263218
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionMembrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4°C and 37°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs-a detergent that preferentially solubilizes the membrane inner leaflet-while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.
dc.description31
dc.description6
dc.description195
dc.description205
dc.description#2010/18516-5; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description(1998) Official Methods and Recommended Practices of the American Oil Chemists' Society, , American Oil Chemists' Society (AOCS) 5th ed. Champaign (IL): AOCS
dc.descriptionAn, X., Guo, X., Liu, S., Lux, S.E., Baines, A., Gratzer, W., Mohandas, N., Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: Regulation of the interactions by phosphatidylinositol-4,5-bisphosphate (2005) Biochemistry, 44, pp. 10681-10688
dc.descriptionAn, X., Zhang, X., Debnath, G., Baines, A.J., Mohandas, N., Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins (2006) Biochemistry, 45, pp. 5725-5732
dc.descriptionAngelova, M.I., Dimitrov, D.S., Liposome electroformation (1986) Faraday Discuss Chem Soc, 81, pp. 303-311
dc.descriptionBeutler, E., West, C., Blume, K.G., The removal of leukocytes and platelets from whole blood (1976) J Lab Clin Med, 88, pp. 328-333
dc.descriptionBezlyepkina, N., Gracià, R.S., Shchelokovskyy, P., Lipowsky, R., Dimova, R., Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol (2013) Biophys J, 104, pp. 1456-1464
dc.descriptionCai, M., Zhao, W., Shang, X., Jiang, J., Ji, H., Tang, Z., Wang, H., Direct evidence of lipid rafts by in situ atomic force microscopy (2012) Small, 8, pp. 1243-12450
dc.descriptionCasadei, B.R., Domingues, C.C., De Paula, E., Riske, K.A., Direct visualization of the action of Triton X-100 on giant vesicles of erythrocyte membrane lipids (2014) Biophys J, 106, pp. 2417-2425
dc.descriptionCassera, M.B., Silber, A.M., Gennaro, A.M., Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface an electron paramagnetic resonance (epr) spin label study (2002) Biophys Chem, 99, pp. 117-127
dc.descriptionChen, P.S., Toribara, J.T.Y., Warner, H., Microdetermination of phosphorus (1956) Anal Chem, 28, pp. 1756-1758
dc.descriptionCiana, A., Achilli, C., Hannoush, R.N., Risso, A., Balduini, C., Minetti, G., Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes (2013) Biochim Biophys Acta, 1828, pp. 924-931
dc.descriptionCiana, A., Achilli, C., Balduini, C., Minetti, G., On the association of lipid rafts to the spectrin skeleton in human erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 183-190
dc.descriptionCiana, A., Balduini, C., Minetti, G., Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton (2005) J Biosci, 30, pp. 317-328
dc.descriptionCiana, A., Achilli, C., Minetti, G., Membrane rafts of the human red blood cell (2014) Mol Membr Biol, 31, pp. 47-57
dc.descriptionCrepaldi Domingues, C., Ciana, A., Buttafava, A., Balduini, C., De Paula, E., Minetti, G., Resistance of human erythrocyte membranes to Triton X-100 and C12E8 (2009) J Membr Biol, 227, pp. 39-48
dc.descriptionDodge, J.T., Mitchell, C., Hanahan, D.J., The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes (1963) Arch Biochem Biophys, 100, pp. 119-130
dc.descriptionDomingues, C.C., Ciana, A., Buttafava, A., Casadei, B.R., Balduini, C., De Paula, E., Minetti, G., Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes (2010) J Membr Biol, 234, pp. 195-205
dc.descriptionFolch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipides from animal tissues (1957) J Biol Chem, 226, pp. 497-509
dc.descriptionGoni, F., Alonso, A., Bagatolli, L., Brown, R., Marsh, D., Prieto, M., Thewalt, J., Phase diagrams of lipid mixtures relevant to the study of membrane rafts (2008) Biochim Biophys Acta, 1781, pp. 665-684
dc.descriptionHubbell, W.L., McConnell, H.M., Molecular motion in spin-labeled phospholipids and membranes (1971) J Am Chem Soc, 93, pp. 314-326
dc.descriptionIngelmo-Torres, M., Gaus, K., Herms, A., Gonzalez-Moreno, E., Kassan, A., Bosch, M., Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane (2009) Biochem J, 420, pp. 373-381
dc.descriptionKoumanov, K., Tessier, C., Momchilova, A., Rainteau, D., Wolf, C., Quinn, P., Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes (2005) Arch Biochem Biophys, 434, pp. 150-158
dc.descriptionKwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M.P., Edidin, M., Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin (2003) Proc Natl Acad Sci USA, 100, pp. 13964-13969
dc.descriptionLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
dc.descriptionLichtenberg, D., Goni, F., Heerklotz, H., Detergent-resistant membranes should not be identified with membrane rafts (2005) Trends Biochem Sci, 30, pp. 430-436
dc.descriptionLingwood, D., Kaiser, H., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes (2009) Biochem Soc Trans, 37, pp. 955-960
dc.descriptionMainali, L., Raguz, M., O'brien, W.J., Subczynski, W.K., Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens (2012) Exp Eye Res, 97, pp. 117-129
dc.descriptionMikhalyov, I., Samsonov, A., Lipid raft detecting in membranes of live erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 1930-1939
dc.descriptionMurphy, S.C., Samuel, B.U., Harrison, T., Speicher, K.D., Speicher, D.W., Reid, M.E., Erythrocyte detergent-resistant membrane proteins: Their characterization and selective uptake during malarial infection (2004) Blood, 103, pp. 1920-1928
dc.descriptionNagao, E., Seydel, K.B., Dvorak, J.A., Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection (2002) Exp Parasitol, 102, pp. 57-59
dc.descriptionPathak, P., London, E., Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation (2011) Biophys J, 101, pp. 2417-2425
dc.descriptionPike, L., Lipid rafts: Heterogeneity on the high seas (2004) Biochem J, 378, pp. 281-292
dc.descriptionPike, L., Han, X., Gross, R.W., Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: A shotgun lipidomics study (2005) J Biol Chem, 280, pp. 26796-26804
dc.descriptionQuinn, P., A lipid matrix model of membrane raft structure (2010) Prog Lipid Res, 49, pp. 390-406
dc.descriptionRose, H.G., Oklander, M., Improved procedure for the extraction of lipids from human erythrocytes (1965) J Lipid Res, 6, pp. 428-431
dc.descriptionSalzer, U., Prohaska, R., Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts (2001) Blood, 97, pp. 1141-1143
dc.descriptionSamuel, B.U., Mohandas, N., Harrison, T., McManus, H., Rosse, W., Reid, M., Haldar, K., The role of cholesterol and glycosylphosphatidylinositol- Anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection (2001) J Biol Chem, 276, pp. 29319-29329
dc.descriptionSchreier, S., Polnaszek, C.F., Smith, I.C., Spin labels in membranes problems in practice (1978) Biochim Biophys Acta, 515, pp. 395-436
dc.descriptionSchuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K., Resistance of cell membranes to different detergents (2003) Proc Natl Acad Sci USA, 100, pp. 5795-5800
dc.descriptionSheetz, M.P., Integral membrane protein interaction with Triton cytoskeletons of erythrocytes (1979) Biochim Biophys Acta, 557, pp. 122-134
dc.descriptionSheetz, M.P., Singer, S.J., Biological membranes as bilayer couples a molecular mechanism of drug-erythrocyte interactions (1974) Proc Natl Acad Sci USA, 71, pp. 4457-4461
dc.descriptionSinger, S.J., Nicolson, G., The fluid mosaic model of the structure of cell membranes (1972) Science, 175, pp. 720-731
dc.descriptionSonnino, S., Prinetti, A., Membrane lipid domains and membrane lipid domain preparations: Are they the same thing? (2008) Trends Glycosci Glycotechnol, 20, pp. 315-340
dc.descriptionSonnino, S., Prinetti, A., Membrane domains and the 'lipid raft' concept (2013) Curr Med Chem, 20, pp. 4-21
dc.descriptionSteck, T.L., The organization of proteins in the human red blood cell membrane a review (1974) J Cell Biol, 62, pp. 1-19
dc.descriptionSubczynski, W., Raguz, M., Widomska, J., Studying lipid organization in biological membranes using liposomes and EPR spin labeling (2010) Methods Mol Biol, 606, pp. 247-269
dc.descriptionSudbrack, T.P., Archilha, N.L., Itri, R., Riske, K.A., Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs (2011) J Phys Chem B, 115, pp. 269-277
dc.descriptionToledo, M.S., Suzuki, E., Straus, A.H., Takahashi, H.K., Glycolipids from Paracoccidioides brasiliensis. Isolation of a galactofuranose-containing glycolipid reactive with sera of patients with paracoccidioidomycosis (1995) J Med Vet Mycol, 33, pp. 247-251
dc.descriptionWaugh, M., Hsuan, J., Preparation of membrane rafts (2009) Methods Mol Biol, 462, pp. 403-414
dc.descriptionYu, J., Fischman, D.A., Steck, T.L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents (1973) J Supramol Struct, 1, pp. 233-248
dc.languageen
dc.publisherInforma Healthcare
dc.relationMolecular Membrane Biology
dc.rightsfechado
dc.sourceScopus
dc.titleBrij Detergents Reveal New Aspects Of Membrane Microdomain In Erythrocytes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución