dc.creator | Casadei B.R. | |
dc.creator | De Oliveira Carvalho P. | |
dc.creator | Riske K.A. | |
dc.creator | Barbosa R.D.M. | |
dc.creator | De Paula E. | |
dc.creator | Domingues C.C. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:50:41Z | |
dc.date | 2015-11-26T15:35:26Z | |
dc.date | 2015-06-25T17:50:41Z | |
dc.date | 2015-11-26T15:35:26Z | |
dc.date.accessioned | 2018-03-28T22:44:00Z | |
dc.date.available | 2018-03-28T22:44:00Z | |
dc.identifier | | |
dc.identifier | Molecular Membrane Biology. Informa Healthcare, v. 31, n. 6, p. 195 - 205, 2014. | |
dc.identifier | 9687688 | |
dc.identifier | 10.3109/09687688.2014.949319 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84907176337&partnerID=40&md5=6bb250dcc4973c8a8b71d968ff9871f6 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85889 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85889 | |
dc.identifier | 2-s2.0-84907176337 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1263218 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4°C and 37°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs-a detergent that preferentially solubilizes the membrane inner leaflet-while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts. | |
dc.description | 31 | |
dc.description | 6 | |
dc.description | 195 | |
dc.description | 205 | |
dc.description | #2010/18516-5; FAPESP; São Paulo Research Foundation | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | (1998) Official Methods and Recommended Practices of the American Oil Chemists' Society, , American Oil Chemists' Society (AOCS) 5th ed. Champaign (IL): AOCS | |
dc.description | An, X., Guo, X., Liu, S., Lux, S.E., Baines, A., Gratzer, W., Mohandas, N., Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: Regulation of the interactions by phosphatidylinositol-4,5-bisphosphate (2005) Biochemistry, 44, pp. 10681-10688 | |
dc.description | An, X., Zhang, X., Debnath, G., Baines, A.J., Mohandas, N., Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins (2006) Biochemistry, 45, pp. 5725-5732 | |
dc.description | Angelova, M.I., Dimitrov, D.S., Liposome electroformation (1986) Faraday Discuss Chem Soc, 81, pp. 303-311 | |
dc.description | Beutler, E., West, C., Blume, K.G., The removal of leukocytes and platelets from whole blood (1976) J Lab Clin Med, 88, pp. 328-333 | |
dc.description | Bezlyepkina, N., Gracià, R.S., Shchelokovskyy, P., Lipowsky, R., Dimova, R., Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol (2013) Biophys J, 104, pp. 1456-1464 | |
dc.description | Cai, M., Zhao, W., Shang, X., Jiang, J., Ji, H., Tang, Z., Wang, H., Direct evidence of lipid rafts by in situ atomic force microscopy (2012) Small, 8, pp. 1243-12450 | |
dc.description | Casadei, B.R., Domingues, C.C., De Paula, E., Riske, K.A., Direct visualization of the action of Triton X-100 on giant vesicles of erythrocyte membrane lipids (2014) Biophys J, 106, pp. 2417-2425 | |
dc.description | Cassera, M.B., Silber, A.M., Gennaro, A.M., Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface an electron paramagnetic resonance (epr) spin label study (2002) Biophys Chem, 99, pp. 117-127 | |
dc.description | Chen, P.S., Toribara, J.T.Y., Warner, H., Microdetermination of phosphorus (1956) Anal Chem, 28, pp. 1756-1758 | |
dc.description | Ciana, A., Achilli, C., Hannoush, R.N., Risso, A., Balduini, C., Minetti, G., Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes (2013) Biochim Biophys Acta, 1828, pp. 924-931 | |
dc.description | Ciana, A., Achilli, C., Balduini, C., Minetti, G., On the association of lipid rafts to the spectrin skeleton in human erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 183-190 | |
dc.description | Ciana, A., Balduini, C., Minetti, G., Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton (2005) J Biosci, 30, pp. 317-328 | |
dc.description | Ciana, A., Achilli, C., Minetti, G., Membrane rafts of the human red blood cell (2014) Mol Membr Biol, 31, pp. 47-57 | |
dc.description | Crepaldi Domingues, C., Ciana, A., Buttafava, A., Balduini, C., De Paula, E., Minetti, G., Resistance of human erythrocyte membranes to Triton X-100 and C12E8 (2009) J Membr Biol, 227, pp. 39-48 | |
dc.description | Dodge, J.T., Mitchell, C., Hanahan, D.J., The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes (1963) Arch Biochem Biophys, 100, pp. 119-130 | |
dc.description | Domingues, C.C., Ciana, A., Buttafava, A., Casadei, B.R., Balduini, C., De Paula, E., Minetti, G., Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes (2010) J Membr Biol, 234, pp. 195-205 | |
dc.description | Folch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipides from animal tissues (1957) J Biol Chem, 226, pp. 497-509 | |
dc.description | Goni, F., Alonso, A., Bagatolli, L., Brown, R., Marsh, D., Prieto, M., Thewalt, J., Phase diagrams of lipid mixtures relevant to the study of membrane rafts (2008) Biochim Biophys Acta, 1781, pp. 665-684 | |
dc.description | Hubbell, W.L., McConnell, H.M., Molecular motion in spin-labeled phospholipids and membranes (1971) J Am Chem Soc, 93, pp. 314-326 | |
dc.description | Ingelmo-Torres, M., Gaus, K., Herms, A., Gonzalez-Moreno, E., Kassan, A., Bosch, M., Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane (2009) Biochem J, 420, pp. 373-381 | |
dc.description | Koumanov, K., Tessier, C., Momchilova, A., Rainteau, D., Wolf, C., Quinn, P., Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes (2005) Arch Biochem Biophys, 434, pp. 150-158 | |
dc.description | Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M.P., Edidin, M., Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin (2003) Proc Natl Acad Sci USA, 100, pp. 13964-13969 | |
dc.description | Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 | |
dc.description | Lichtenberg, D., Goni, F., Heerklotz, H., Detergent-resistant membranes should not be identified with membrane rafts (2005) Trends Biochem Sci, 30, pp. 430-436 | |
dc.description | Lingwood, D., Kaiser, H., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes (2009) Biochem Soc Trans, 37, pp. 955-960 | |
dc.description | Mainali, L., Raguz, M., O'brien, W.J., Subczynski, W.K., Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens (2012) Exp Eye Res, 97, pp. 117-129 | |
dc.description | Mikhalyov, I., Samsonov, A., Lipid raft detecting in membranes of live erythrocytes (2011) Biochim Biophys Acta, 1808, pp. 1930-1939 | |
dc.description | Murphy, S.C., Samuel, B.U., Harrison, T., Speicher, K.D., Speicher, D.W., Reid, M.E., Erythrocyte detergent-resistant membrane proteins: Their characterization and selective uptake during malarial infection (2004) Blood, 103, pp. 1920-1928 | |
dc.description | Nagao, E., Seydel, K.B., Dvorak, J.A., Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection (2002) Exp Parasitol, 102, pp. 57-59 | |
dc.description | Pathak, P., London, E., Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation (2011) Biophys J, 101, pp. 2417-2425 | |
dc.description | Pike, L., Lipid rafts: Heterogeneity on the high seas (2004) Biochem J, 378, pp. 281-292 | |
dc.description | Pike, L., Han, X., Gross, R.W., Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: A shotgun lipidomics study (2005) J Biol Chem, 280, pp. 26796-26804 | |
dc.description | Quinn, P., A lipid matrix model of membrane raft structure (2010) Prog Lipid Res, 49, pp. 390-406 | |
dc.description | Rose, H.G., Oklander, M., Improved procedure for the extraction of lipids from human erythrocytes (1965) J Lipid Res, 6, pp. 428-431 | |
dc.description | Salzer, U., Prohaska, R., Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts (2001) Blood, 97, pp. 1141-1143 | |
dc.description | Samuel, B.U., Mohandas, N., Harrison, T., McManus, H., Rosse, W., Reid, M., Haldar, K., The role of cholesterol and glycosylphosphatidylinositol- Anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection (2001) J Biol Chem, 276, pp. 29319-29329 | |
dc.description | Schreier, S., Polnaszek, C.F., Smith, I.C., Spin labels in membranes problems in practice (1978) Biochim Biophys Acta, 515, pp. 395-436 | |
dc.description | Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K., Resistance of cell membranes to different detergents (2003) Proc Natl Acad Sci USA, 100, pp. 5795-5800 | |
dc.description | Sheetz, M.P., Integral membrane protein interaction with Triton cytoskeletons of erythrocytes (1979) Biochim Biophys Acta, 557, pp. 122-134 | |
dc.description | Sheetz, M.P., Singer, S.J., Biological membranes as bilayer couples a molecular mechanism of drug-erythrocyte interactions (1974) Proc Natl Acad Sci USA, 71, pp. 4457-4461 | |
dc.description | Singer, S.J., Nicolson, G., The fluid mosaic model of the structure of cell membranes (1972) Science, 175, pp. 720-731 | |
dc.description | Sonnino, S., Prinetti, A., Membrane lipid domains and membrane lipid domain preparations: Are they the same thing? (2008) Trends Glycosci Glycotechnol, 20, pp. 315-340 | |
dc.description | Sonnino, S., Prinetti, A., Membrane domains and the 'lipid raft' concept (2013) Curr Med Chem, 20, pp. 4-21 | |
dc.description | Steck, T.L., The organization of proteins in the human red blood cell membrane a review (1974) J Cell Biol, 62, pp. 1-19 | |
dc.description | Subczynski, W., Raguz, M., Widomska, J., Studying lipid organization in biological membranes using liposomes and EPR spin labeling (2010) Methods Mol Biol, 606, pp. 247-269 | |
dc.description | Sudbrack, T.P., Archilha, N.L., Itri, R., Riske, K.A., Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs (2011) J Phys Chem B, 115, pp. 269-277 | |
dc.description | Toledo, M.S., Suzuki, E., Straus, A.H., Takahashi, H.K., Glycolipids from Paracoccidioides brasiliensis. Isolation of a galactofuranose-containing glycolipid reactive with sera of patients with paracoccidioidomycosis (1995) J Med Vet Mycol, 33, pp. 247-251 | |
dc.description | Waugh, M., Hsuan, J., Preparation of membrane rafts (2009) Methods Mol Biol, 462, pp. 403-414 | |
dc.description | Yu, J., Fischman, D.A., Steck, T.L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents (1973) J Supramol Struct, 1, pp. 233-248 | |
dc.language | en | |
dc.publisher | Informa Healthcare | |
dc.relation | Molecular Membrane Biology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Brij Detergents Reveal New Aspects Of Membrane Microdomain In Erythrocytes | |
dc.type | Artículos de revistas | |