Artículos de revistas
Chapter 4 Cutinases:. Properties And Industrial Applications
Registro en:
Advances In Applied Microbiology. , v. 66, n. , p. 77 - 95, 2009.
652164
10.1016/S0065-2164(08)00804-6
2-s2.0-59349095484
Autor
Pio T.F.
Macedo G.A.
Institución
Resumen
Cutinases, also known as cutin hydrolases (EC 3.1.1.74) are enzymes first discovered from phytopathogenic fungi that grow on cutin as the sole carbon source. Cutin is a complex biopolymer composed of epoxy and hydroxy fatty acids, and forms the structural component of higher plants cuticle. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification, and trans-esterification reactions. Cutinases present high stability in organic solvents and ionic liquids, both free and microencapsulated in reverse micelles. These characteristics allow the enzyme application in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles, and polymer chemistry. The present chapter describes the characteristics, potential applications, and new perspectives for these enzymes. © 2009 Elsevier Inc. All rights reserved. 66
77 95 Ahmed, J.I., Trans"-fixed? (1995) Food Sci. Technol. Today, 9, pp. 228-231 Alisch, M., Feuerhack, A., Blosfeld, A., Andreaus, J., Zimmermann, W., Polyethylene terephthalate fibers by esterases from actinomycete isolate (2004) Biocatal. Biotransform., 22, pp. 347-352 Andersen, A., Svendsen, A., Vind, J., Lassen, S.F., Hjort, C., Borch, K., Patkar, S.A., Studies of ferulic acid esterase activity in fungal lipases and cutinases (2002) Colloids Surf., 26, pp. 47-55 Ballesteros, A., Bornscheuer, U., Capewell, A., Combes, D., Condoret, J.S., König, K., Kolisis, F.N., Xenakis, A., Enzymes in non-conventional phases (1995) Biocatal. Biotransform., 13, pp. 1-42 Barlas, M.E., Toxicological assessment of biodegraded malathion in albino mice (1996) Bull. Environ. Contam. Toxicol., 57, pp. 705-712 Barros, D.P.C., Fonseca, L.P., Cabral, J.M.S., Cutinase-catalyzed biosynthesis of short chain alkyl esters (2007) J. Biotechnol., 131, pp. 109-110 Bastioli, C., Starch-polymer composites (1995) Degradable Polymers, Principles and Applications, pp. 112-133. , Scott G., and Gilead D. (Eds), Chapman & Hall, London Borreguero, I., Carvalho, C.M.L., Cabral, J.M.S., Sinisterra, J.V., Alcántara, A.R., Enantioselective properties of Fusarium solani pisi cutinase on transesterification of acyclic diols: Activity and stability evaluation (2001) J. Mol. Catal. B: Enzym., 11, pp. 613-622 Breccia, J.D., Krook, M., Ohlin, M., Hatti-Kaul, R., The search for a peptide ligand targeting the lipolytic enzyme cutinase (2003) Enzyme Microb. Technol., 33, p. 244 http://www.brenda-enzymes.info, Brenda: The Comprehensive Enzyme Information System. Assessed online asCampbell, M.K., (2000) Bioquímica. 3rd ed., , Artmed Editora Ltda, Porto Alegre http://patents.ic.gc.ca, Canadian Patents Database. Assessed online asCarvalho, C.M.L., Aires-Barros, M.R., Cabral, J.M.S., Cutinase: From molecular level to bioprocess development (1999) Biotechnol. Bioeng., 60, pp. 17-34 Carvalho, C.M.L., Aires-Barros, M.R., Cabral, J.M.S., Kinetics of cutinase catalyzed transesterification in AOT reversed micelles: Modeling of a batch stirred tank reactor (2000) J. Biotechnol., 81, pp. 1-13 Carvalho, P.O., Calafatti, S.A., Marassi, M., Silva, D.M., Contesini, F.J., Bizaco, R., Macedo, G.A., Potencial de biocatálise enantiosseletiva de lipases microbianas (2005) Quim. Nova, 28, pp. 614-621 Carvalho, C.M.L., Serralheiro, M.L.M., Cabral, J.M.S., Aires-Barros, M.R., Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles (1997) Enzyme Microb. Technol., 21, pp. 117-123 Casey, J., Macrae, A., Biotechnology and the oleochemical industry (1992) Inform., 3, pp. 203-207 Castro, H.F., Mendes, A.A., Santos, J.C., Aguiar, C.L., Modificação de óleos e gorduras por biotransformação (2004) Quim. Nova., 27, pp. 146-156 Castro, H.F., Oliveira, P.C., Pereira, E.B., Evaluation of different approaches for lipase catalyzed synthesis of citronellyl acetate (1997) Biotechnol Lett., 19, pp. 229-232 Chambers, W.H., Organophosphorous compounds: An overview (1992) Organophosphates, Chemistry, Fate, and Effects, pp. 3-17. , Chambers J.E., and Levi P.E. (Eds), Academic Press, San Diego Chang, B.V., Yang, C.M., Cheng, C.H., Yuan, S.Y., Biodegradation of phthalate esters by two bacteria strains (2004) Chemosphere, 55, pp. 533-538 Claon, P.A., Akoh, C.C., Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent (1994) Enzyme Microb. Technol., 16, pp. 835-838 Clauss, J., Interesterificação de Óleo de Palma (1996) Óleos & Grãos, 5, pp. 31-37 Creveld, L.D., Meijberg, W., Berendsen, H.J.C., Pepermans, H.A.M., SDS studies of Fusarium solani pisi cutinase: Consequences for stability in the presence of surfactants (2001) Biophys. Chem., 92, pp. 61-75 Croteau, R., (1980) Fragrance and Flavor Substances., , D&PS Verlag, Germany Dalla-Vecchia, R., Nascimento, M.G., Soudi, V., Aplicações sintéticas de lipases imobilizadas em polímeros (2004) Quím. Nova., 27, pp. 623-630 Degani, O., Gepstein, S., Dosoretz, C.G., Potential use of cutinase in enzymatic scouring cotton fiber cuticle (2002) Appl. Biochem. Biotechnol., 102, pp. 277-289 Doi, Y., (1990) Microbial Polyesters., , VCH Publishers, New York Egmond, M.R., De Vlieg, J., Fusarium solani pisi Cutinase (2000) Biochem., 82, pp. 1015-1021 Espinoza, M.C.F., Villeneuve, P., Phenolic Acids Enzymatic Lipophilization (2005) J. Agric. Food Chem., 53, pp. 2779-2787 http://www.ep.espacenet.com/?locale=en_ep, European Patent Office. Assessed online asFaber, K., (2000) Biotransformations in Organic Chemistry. 4th ed., , Springer-Verlag, New York Ferreira, B.S., Calado, C.R.C., Keulen, F., Fonseca, L.P., Cabral, J.M.S., Fonseca, M.M.R., Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways (2004) J. Biotechnol., 109, pp. 159-167 Fett, W.F., Gerard, H.C., Moreau, R.A., Osman, S.F., Jones, L.E., Screening of nonfilamentous bacteria for production of cutin-degrading enzymes (1992) Appl. Environ. Microbiol., 58, pp. 2123-2130 Filipsen, J.A.C., Appel, A.C.M., Van Der Hidjen, H.T.W.M., Verrips, C.T., Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process (1998) Enzyme Microb. Technol., 23, pp. 274-280 Fischer-Colbrie, G., Heumann, S., Liebminger, S., Almansa, E., Cavaco-Paulo, A., Gubitz, G.M., New enzymes with potential for pet surface modification (2004) Biocatal. Biotransform., 22, pp. 341-346 Galloway, T., Handy, R., Immunotoxicity of organophosphorus pesticides (2003) Ecotoxicology, 12, pp. 345-363 Gandhi, N.N., Applications of lipases (1997) J. Am. Oil Chem. Soc., 74, pp. 621-633 Garcia, S., Vidinha, P., Arvana, H., Silva, M.D.R.G., Ferreira, M.O., Cabral, J.M.S., Macedo, E.A., Barreiros, S.J., Cutinase activity in supercritical and organic media: Water activity, solvatation and acid-base effects (2005) Supercrit. Fluids., 35, pp. 62-69 Gonçalves, L.A.G., (1996) Óleos e Grãos, 5, p. 27 Gonçalves, A.M., Schacht, E., Matthjis, G., Aires-Barros, M.R., Cabral, J.M.S., Gil, M.H., Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports (1999) Enzyme Microb. Technol., 24, pp. 60-66 Gunstone, F.D., What else besides commodity oils and fats? (1999) Fett-Lipid, 101, pp. 124-130 Hammond, E.G., Glatz, B.A., (1988) Food Biotechnology, 2, pp. 173-217. , Kling R.D., and Cheetham P.S.J. (Eds), Elsevier, Amsterdam Hills, G., Industrial use of lipases to produce fatty acid esters (2003) Eur. J. Lipid Sci. Technol., 105, pp. 601-607 Hunsen, M., Azim, A., Mang, H., Wallner, S.R., Ronkvist, A., Xie, W., Gross, R., A cutinase with polyester synthesis activity (2007) Macromolecules, 40, pp. 148-150 Indeerjeet, K., Mathur, R.P., Tandon, S.N., Prem, D., Identification of metabolites of malathion in plants, water and soil by CG-MS (1997) Biomed. Chromatogr., 11, pp. 352-355 John, V.T., Abraham, G., Lipase catalysis and its applications (1991) Biocatalysis for Industry, pp. 193-217. , Dodrick J.S. (Ed), Plenum Press, New York Karra-Chaabouni, M., Pulvin, S., Touraud, D., Thomas, D., Enzymatic synthesis of geraniol esters in a solvent-free system by lipases (1996) Biotechnol. Lett., 18, pp. 1083-1088 Kavlock, R., Boekelheide, K., Chapin, R., Cunningham, M., Faustman, E., Foster, P., Golub, M., Henderson, R., NTP center for the evaluation of risks to human reproduction: phtalates expert panel report on the reproductive and developmental toxicity of di-it n-hexyl phthalate (2002) Reprod. Toxicol., 16, pp. 709-719 Kerry, N.L., Abbey, M., Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro (1997) Atherosclerosis, 135, pp. 93-102 Klibanov, A.M., Enzymatic catalysis in anhydrous organic solvents (1989) Trends Biochem. Sci., 14, pp. 141-144 Klibanov, A.M., Improving enzymes by using them in organic solvents (2001) Nature, 409, pp. 241-246 Kolattukudy, P.E., Cutinases from fungi and pollen (1984) Lipases, pp. 471-504. , Borgstrom B., and Brockman T. (Eds), Elsevier Publishing, Amsterdam Krishina, S.H., Developments and trends in enzyme catalysis in nonconventional media (2002) Biotechnol. Adv., 20, pp. 239-267 Larsson, K.M., Adlercreutz, P., Mattiasson, B., Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery (1990) Biotechnol. Bioeng., 36, pp. 135-141 Leal, M.C.M.R., Cammarota, M.C., Freire, D.M.G., Sant'Anna Jr., G.L., Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters (2002) Braz. J. Chem. Eng., 19, pp. 175-180 Lie, E., Molin, G., (1991) Bioconversion of Waste Materials to Industrial Products, , Martin A.M. (Ed), Elsevier Applied Science, New York Lima, J.R., Nassu, R.T., Substitutos de Gorduras em Alimentos: Características e Aplicações (1996) Quim. Nova., 19, pp. 127-134 Longo, M.A., Sanromán, M.A., Production of food aroma compounds: Microbial and enzymatic methodologies (2006) Food Technol. Biotechnol., 44, pp. 335-353 Macedo, G.A., Pio, T.F., A rapid screening method for cutinase producing microorganisms (2005) Braz. J. Microbiol., 36, pp. 388-394 Mannesse, M.L.M., Cox, R.C., Koops, B.C., Verheij, H.M., Haas, G.H., Egmond, M., Van Der Hijden, H.T.W., Vlieg, J., Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity (1995) Biochemistry, 34, pp. 6400-6407 Masse, L., Kennedy, K.J., Chou, S., Testing of alkaline and enzymatic pretreatment for fat particles in slaughterhouses wastewater (2001) Bioresour. Technol., 77, pp. 145-155 Masson, W., Loftsson, T., Haraldsson, G.G., Marine lipids for products, soft compounds and other pharmaceutical applications (2000) Pharmacies., 55, pp. 172-177 Matamá, T., Silva, C., O'Neill, A., Casal, M., Soares, C., Gubitz, G.M., Cavaco-Paulo, A., (2004) Improving synthetic fibers with enzymes. 3rd, , International Conference on Textile Biotechnology (abstract 5) Mayer, J.M., Kaplin, D.L., Biodegradable materials: Balancing degradability and performance (1994) Trends Polym. Sci., 2, pp. 227-235 Melo, E.P., Costa, S.M.B., Cabral, J.M.S., Fojan, P., Petersen, S.B., Cutinase-AOT interactions in reverse micelles: The effect of 1-hexanol (2003) Chem. Phys. Lipids, 124, pp. 37-47 Muderhwa, J., Pina, M., Graille, J., Aptitude à la transesterification de quelques lipases regioselectives 1-3 (1988) J. Oléagineux., 43, pp. 385-392 Mueller, R.J., Biological degradation of synthetic polyesters-Enzymes as potential catalysists for polyester recycling (2006) Process Biochem., 41, pp. 2124-2128 Mukherjee, K.D., Lipase-catalyzed reactions for modification of fats and other lipids (1990) Biocatalysis., 3, pp. 277-293 Murphy, C.A., Cameron, J.A., Huang, S.J., Vinopal, R.T., Fusarium polycaprolactone depolimerase is cutinase (1996) Appl. Environ. Microbiol., 62, pp. 456-460 Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., Soccol, V.T., The realm of microbial lipases in biotechnology (1999) Biotechnol. Appl. Biochem., 29, pp. 119-131 Paques, F.W., Macedo, G.A., Lipases de látex vegetais: propriedades e aplicações industriais (2006) Quím. Nova., 29, pp. 93-99 Petersen, S.B., Johnson, P.H., Fojan, P., Petersen, E.I., Petersen, M.T.N., Hansen, S., Ishak, R.J., Hough, R.J., Protein engineering the surface of enzymes (1998) J. Biotechnol., 66, pp. 11-26 Pio, T.F., Macedo, G.A., Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology (2007) J. Ind. Microbiol. Biotechnol., 10, pp. 101-111 Regado, M.A., Cristóvão, B.M., Moutinho, C.G., Balcão, V.M., Aires-Barros, R., Ferreira, J.P.M., Malcata, F.X., Flavour development via lipolysis of milk fat: Changes in free fatty acid pool (2007) Int. J. Food Sci. Technol., 42, pp. 961-968 Sebastião, M.J., Cabral, J.M.S., Aires-Barros, M.R., Synthesis of fatty acid esters by a recombinant cutinase in reversed micelles (1993) Biotechnol. Bioeng., 42, pp. 326-332 Silva, F.A.M., Borges, F., Guimarães, C., Lima, J.L.F.C., Matos, C., Reis, S., Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters (2000) J. Agric. Food Chem., 48, pp. 2122-2126 Silva, C.M., Carneiro, F., O'Neill, A., Fonseca, L.P., Cabral, J.M.S., Guebitz, G., Cavaco-Paulo, A., Cutinase-A new tool for biodegradation of synthetic fibers (2005) J. Polym. Sci., 43, pp. 2448-2450 Soares, C.M., Teixeira, V.H., Baptista, A.M., Protein structure and dynamics in no aqueous solvents: Insights from molecular dynamics simulation studies (2003) Biophys. J., 84, pp. 1628-1641 Stamatis, H., Kolisis, F.N., Xenakis, A., Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions (1993) Biotechnol. Lett., 15, pp. 471-476 Stamatis, H., Sereti, V., Kolisis, F.M., Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants (1999) J. Am. Oil Chem. Soc., 12, pp. 1505-1510 Sung, H.H., Kao, W.Y., Su, Y.J., Effects and toxicity of phthalate esters to haemocytes of giant fresh water prawn, Macrobacillum rosenbergii (2003) Aquat. Toxicol., 64, pp. 25-37 Ternström, T., Svendsen, A., Akke, M., Adlercreutz, P., Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride (2005) Biochim. Biophys. Acta., 1748, pp. 74-83 Vandamme, E.J., Soetaert, W., Bioflavours and fragrances via fermentation and biocatalysis (2002) J. Chem. Technol. Biotechnol., 77, pp. 1323-1332 Vertommen, M.A.M.E., Nierstrasz, V.A., Van Der Veer, M., Warmoeskerken, M.M.C.G., Enzymatic surface modification of poly(ethylene terephtalate) (2005) J. Biotechnol., 120, pp. 376-386 Villeneuve, P., Muderwha, J.M., Graille, J., Hass, M.J., Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biologic approach (2000) J. Mol. Catal. B: Enzym., 4, pp. 113-148 Walz, I., Schwack, W., Cutinase inhibition by means of insecticidal organophosphates and Carbamates (2007) Eur. Food Res. Technol., 225, pp. 593-601 Walz, I., Schwack, W., Cutinase inhibition by means of insecticidal organophosphates and Carbamates Part 2: Screening of representative insecticides on cutinase activity (2008) Eur. Food Res. Technol., 226, pp. 1135-1143 Welsh, W.W., Murray, W.D., Williams, R.E., Microbiological and enzymatic production of flavor and fragance chemicals (1989) Crit. Rev. Biotechnol., 9, pp. 105-169 Willis, W.M., Maragoni, A.G., Biotechnology & genetic engineering reviews (1999) Biotechnol. Genetic Eng. Rev., 16, pp. 141-175 Yoon, M., Kellis, J., Poulouse, A.J., Enzymatic modification of polyester (2002) AATCC, 2, pp. 33-36