dc.creatorPio T.F.
dc.creatorMacedo G.A.
dc.date2009
dc.date2015-06-26T13:35:06Z
dc.date2015-11-26T15:33:37Z
dc.date2015-06-26T13:35:06Z
dc.date2015-11-26T15:33:37Z
dc.date.accessioned2018-03-28T22:42:11Z
dc.date.available2018-03-28T22:42:11Z
dc.identifier
dc.identifierAdvances In Applied Microbiology. , v. 66, n. , p. 77 - 95, 2009.
dc.identifier652164
dc.identifier10.1016/S0065-2164(08)00804-6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-59349095484&partnerID=40&md5=649ab43a1362f9fad50967aa9bbc03e8
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92152
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92152
dc.identifier2-s2.0-59349095484
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262792
dc.descriptionCutinases, also known as cutin hydrolases (EC 3.1.1.74) are enzymes first discovered from phytopathogenic fungi that grow on cutin as the sole carbon source. Cutin is a complex biopolymer composed of epoxy and hydroxy fatty acids, and forms the structural component of higher plants cuticle. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification, and trans-esterification reactions. Cutinases present high stability in organic solvents and ionic liquids, both free and microencapsulated in reverse micelles. These characteristics allow the enzyme application in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles, and polymer chemistry. The present chapter describes the characteristics, potential applications, and new perspectives for these enzymes. © 2009 Elsevier Inc. All rights reserved.
dc.description66
dc.description
dc.description77
dc.description95
dc.descriptionAhmed, J.I., Trans"-fixed? (1995) Food Sci. Technol. Today, 9, pp. 228-231
dc.descriptionAlisch, M., Feuerhack, A., Blosfeld, A., Andreaus, J., Zimmermann, W., Polyethylene terephthalate fibers by esterases from actinomycete isolate (2004) Biocatal. Biotransform., 22, pp. 347-352
dc.descriptionAndersen, A., Svendsen, A., Vind, J., Lassen, S.F., Hjort, C., Borch, K., Patkar, S.A., Studies of ferulic acid esterase activity in fungal lipases and cutinases (2002) Colloids Surf., 26, pp. 47-55
dc.descriptionBallesteros, A., Bornscheuer, U., Capewell, A., Combes, D., Condoret, J.S., König, K., Kolisis, F.N., Xenakis, A., Enzymes in non-conventional phases (1995) Biocatal. Biotransform., 13, pp. 1-42
dc.descriptionBarlas, M.E., Toxicological assessment of biodegraded malathion in albino mice (1996) Bull. Environ. Contam. Toxicol., 57, pp. 705-712
dc.descriptionBarros, D.P.C., Fonseca, L.P., Cabral, J.M.S., Cutinase-catalyzed biosynthesis of short chain alkyl esters (2007) J. Biotechnol., 131, pp. 109-110
dc.descriptionBastioli, C., Starch-polymer composites (1995) Degradable Polymers, Principles and Applications, pp. 112-133. , Scott G., and Gilead D. (Eds), Chapman & Hall, London
dc.descriptionBorreguero, I., Carvalho, C.M.L., Cabral, J.M.S., Sinisterra, J.V., Alcántara, A.R., Enantioselective properties of Fusarium solani pisi cutinase on transesterification of acyclic diols: Activity and stability evaluation (2001) J. Mol. Catal. B: Enzym., 11, pp. 613-622
dc.descriptionBreccia, J.D., Krook, M., Ohlin, M., Hatti-Kaul, R., The search for a peptide ligand targeting the lipolytic enzyme cutinase (2003) Enzyme Microb. Technol., 33, p. 244
dc.descriptionhttp://www.brenda-enzymes.info, Brenda: The Comprehensive Enzyme Information System. Assessed online asCampbell, M.K., (2000) Bioquímica. 3rd ed., , Artmed Editora Ltda, Porto Alegre
dc.descriptionhttp://patents.ic.gc.ca, Canadian Patents Database. Assessed online asCarvalho, C.M.L., Aires-Barros, M.R., Cabral, J.M.S., Cutinase: From molecular level to bioprocess development (1999) Biotechnol. Bioeng., 60, pp. 17-34
dc.descriptionCarvalho, C.M.L., Aires-Barros, M.R., Cabral, J.M.S., Kinetics of cutinase catalyzed transesterification in AOT reversed micelles: Modeling of a batch stirred tank reactor (2000) J. Biotechnol., 81, pp. 1-13
dc.descriptionCarvalho, P.O., Calafatti, S.A., Marassi, M., Silva, D.M., Contesini, F.J., Bizaco, R., Macedo, G.A., Potencial de biocatálise enantiosseletiva de lipases microbianas (2005) Quim. Nova, 28, pp. 614-621
dc.descriptionCarvalho, C.M.L., Serralheiro, M.L.M., Cabral, J.M.S., Aires-Barros, M.R., Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles (1997) Enzyme Microb. Technol., 21, pp. 117-123
dc.descriptionCasey, J., Macrae, A., Biotechnology and the oleochemical industry (1992) Inform., 3, pp. 203-207
dc.descriptionCastro, H.F., Mendes, A.A., Santos, J.C., Aguiar, C.L., Modificação de óleos e gorduras por biotransformação (2004) Quim. Nova., 27, pp. 146-156
dc.descriptionCastro, H.F., Oliveira, P.C., Pereira, E.B., Evaluation of different approaches for lipase catalyzed synthesis of citronellyl acetate (1997) Biotechnol Lett., 19, pp. 229-232
dc.descriptionChambers, W.H., Organophosphorous compounds: An overview (1992) Organophosphates, Chemistry, Fate, and Effects, pp. 3-17. , Chambers J.E., and Levi P.E. (Eds), Academic Press, San Diego
dc.descriptionChang, B.V., Yang, C.M., Cheng, C.H., Yuan, S.Y., Biodegradation of phthalate esters by two bacteria strains (2004) Chemosphere, 55, pp. 533-538
dc.descriptionClaon, P.A., Akoh, C.C., Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent (1994) Enzyme Microb. Technol., 16, pp. 835-838
dc.descriptionClauss, J., Interesterificação de Óleo de Palma (1996) Óleos & Grãos, 5, pp. 31-37
dc.descriptionCreveld, L.D., Meijberg, W., Berendsen, H.J.C., Pepermans, H.A.M., SDS studies of Fusarium solani pisi cutinase: Consequences for stability in the presence of surfactants (2001) Biophys. Chem., 92, pp. 61-75
dc.descriptionCroteau, R., (1980) Fragrance and Flavor Substances., , D&PS Verlag, Germany
dc.descriptionDalla-Vecchia, R., Nascimento, M.G., Soudi, V., Aplicações sintéticas de lipases imobilizadas em polímeros (2004) Quím. Nova., 27, pp. 623-630
dc.descriptionDegani, O., Gepstein, S., Dosoretz, C.G., Potential use of cutinase in enzymatic scouring cotton fiber cuticle (2002) Appl. Biochem. Biotechnol., 102, pp. 277-289
dc.descriptionDoi, Y., (1990) Microbial Polyesters., , VCH Publishers, New York
dc.descriptionEgmond, M.R., De Vlieg, J., Fusarium solani pisi Cutinase (2000) Biochem., 82, pp. 1015-1021
dc.descriptionEspinoza, M.C.F., Villeneuve, P., Phenolic Acids Enzymatic Lipophilization (2005) J. Agric. Food Chem., 53, pp. 2779-2787
dc.descriptionhttp://www.ep.espacenet.com/?locale=en_ep, European Patent Office. Assessed online asFaber, K., (2000) Biotransformations in Organic Chemistry. 4th ed., , Springer-Verlag, New York
dc.descriptionFerreira, B.S., Calado, C.R.C., Keulen, F., Fonseca, L.P., Cabral, J.M.S., Fonseca, M.M.R., Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways (2004) J. Biotechnol., 109, pp. 159-167
dc.descriptionFett, W.F., Gerard, H.C., Moreau, R.A., Osman, S.F., Jones, L.E., Screening of nonfilamentous bacteria for production of cutin-degrading enzymes (1992) Appl. Environ. Microbiol., 58, pp. 2123-2130
dc.descriptionFilipsen, J.A.C., Appel, A.C.M., Van Der Hidjen, H.T.W.M., Verrips, C.T., Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process (1998) Enzyme Microb. Technol., 23, pp. 274-280
dc.descriptionFischer-Colbrie, G., Heumann, S., Liebminger, S., Almansa, E., Cavaco-Paulo, A., Gubitz, G.M., New enzymes with potential for pet surface modification (2004) Biocatal. Biotransform., 22, pp. 341-346
dc.descriptionGalloway, T., Handy, R., Immunotoxicity of organophosphorus pesticides (2003) Ecotoxicology, 12, pp. 345-363
dc.descriptionGandhi, N.N., Applications of lipases (1997) J. Am. Oil Chem. Soc., 74, pp. 621-633
dc.descriptionGarcia, S., Vidinha, P., Arvana, H., Silva, M.D.R.G., Ferreira, M.O., Cabral, J.M.S., Macedo, E.A., Barreiros, S.J., Cutinase activity in supercritical and organic media: Water activity, solvatation and acid-base effects (2005) Supercrit. Fluids., 35, pp. 62-69
dc.descriptionGonçalves, L.A.G., (1996) Óleos e Grãos, 5, p. 27
dc.descriptionGonçalves, A.M., Schacht, E., Matthjis, G., Aires-Barros, M.R., Cabral, J.M.S., Gil, M.H., Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports (1999) Enzyme Microb. Technol., 24, pp. 60-66
dc.descriptionGunstone, F.D., What else besides commodity oils and fats? (1999) Fett-Lipid, 101, pp. 124-130
dc.descriptionHammond, E.G., Glatz, B.A., (1988) Food Biotechnology, 2, pp. 173-217. , Kling R.D., and Cheetham P.S.J. (Eds), Elsevier, Amsterdam
dc.descriptionHills, G., Industrial use of lipases to produce fatty acid esters (2003) Eur. J. Lipid Sci. Technol., 105, pp. 601-607
dc.descriptionHunsen, M., Azim, A., Mang, H., Wallner, S.R., Ronkvist, A., Xie, W., Gross, R., A cutinase with polyester synthesis activity (2007) Macromolecules, 40, pp. 148-150
dc.descriptionIndeerjeet, K., Mathur, R.P., Tandon, S.N., Prem, D., Identification of metabolites of malathion in plants, water and soil by CG-MS (1997) Biomed. Chromatogr., 11, pp. 352-355
dc.descriptionJohn, V.T., Abraham, G., Lipase catalysis and its applications (1991) Biocatalysis for Industry, pp. 193-217. , Dodrick J.S. (Ed), Plenum Press, New York
dc.descriptionKarra-Chaabouni, M., Pulvin, S., Touraud, D., Thomas, D., Enzymatic synthesis of geraniol esters in a solvent-free system by lipases (1996) Biotechnol. Lett., 18, pp. 1083-1088
dc.descriptionKavlock, R., Boekelheide, K., Chapin, R., Cunningham, M., Faustman, E., Foster, P., Golub, M., Henderson, R., NTP center for the evaluation of risks to human reproduction: phtalates expert panel report on the reproductive and developmental toxicity of di-it n-hexyl phthalate (2002) Reprod. Toxicol., 16, pp. 709-719
dc.descriptionKerry, N.L., Abbey, M., Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro (1997) Atherosclerosis, 135, pp. 93-102
dc.descriptionKlibanov, A.M., Enzymatic catalysis in anhydrous organic solvents (1989) Trends Biochem. Sci., 14, pp. 141-144
dc.descriptionKlibanov, A.M., Improving enzymes by using them in organic solvents (2001) Nature, 409, pp. 241-246
dc.descriptionKolattukudy, P.E., Cutinases from fungi and pollen (1984) Lipases, pp. 471-504. , Borgstrom B., and Brockman T. (Eds), Elsevier Publishing, Amsterdam
dc.descriptionKrishina, S.H., Developments and trends in enzyme catalysis in nonconventional media (2002) Biotechnol. Adv., 20, pp. 239-267
dc.descriptionLarsson, K.M., Adlercreutz, P., Mattiasson, B., Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery (1990) Biotechnol. Bioeng., 36, pp. 135-141
dc.descriptionLeal, M.C.M.R., Cammarota, M.C., Freire, D.M.G., Sant'Anna Jr., G.L., Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters (2002) Braz. J. Chem. Eng., 19, pp. 175-180
dc.descriptionLie, E., Molin, G., (1991) Bioconversion of Waste Materials to Industrial Products, , Martin A.M. (Ed), Elsevier Applied Science, New York
dc.descriptionLima, J.R., Nassu, R.T., Substitutos de Gorduras em Alimentos: Características e Aplicações (1996) Quim. Nova., 19, pp. 127-134
dc.descriptionLongo, M.A., Sanromán, M.A., Production of food aroma compounds: Microbial and enzymatic methodologies (2006) Food Technol. Biotechnol., 44, pp. 335-353
dc.descriptionMacedo, G.A., Pio, T.F., A rapid screening method for cutinase producing microorganisms (2005) Braz. J. Microbiol., 36, pp. 388-394
dc.descriptionMannesse, M.L.M., Cox, R.C., Koops, B.C., Verheij, H.M., Haas, G.H., Egmond, M., Van Der Hijden, H.T.W., Vlieg, J., Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity (1995) Biochemistry, 34, pp. 6400-6407
dc.descriptionMasse, L., Kennedy, K.J., Chou, S., Testing of alkaline and enzymatic pretreatment for fat particles in slaughterhouses wastewater (2001) Bioresour. Technol., 77, pp. 145-155
dc.descriptionMasson, W., Loftsson, T., Haraldsson, G.G., Marine lipids for products, soft compounds and other pharmaceutical applications (2000) Pharmacies., 55, pp. 172-177
dc.descriptionMatamá, T., Silva, C., O'Neill, A., Casal, M., Soares, C., Gubitz, G.M., Cavaco-Paulo, A., (2004) Improving synthetic fibers with enzymes. 3rd, , International Conference on Textile Biotechnology (abstract 5)
dc.descriptionMayer, J.M., Kaplin, D.L., Biodegradable materials: Balancing degradability and performance (1994) Trends Polym. Sci., 2, pp. 227-235
dc.descriptionMelo, E.P., Costa, S.M.B., Cabral, J.M.S., Fojan, P., Petersen, S.B., Cutinase-AOT interactions in reverse micelles: The effect of 1-hexanol (2003) Chem. Phys. Lipids, 124, pp. 37-47
dc.descriptionMuderhwa, J., Pina, M., Graille, J., Aptitude à la transesterification de quelques lipases regioselectives 1-3 (1988) J. Oléagineux., 43, pp. 385-392
dc.descriptionMueller, R.J., Biological degradation of synthetic polyesters-Enzymes as potential catalysists for polyester recycling (2006) Process Biochem., 41, pp. 2124-2128
dc.descriptionMukherjee, K.D., Lipase-catalyzed reactions for modification of fats and other lipids (1990) Biocatalysis., 3, pp. 277-293
dc.descriptionMurphy, C.A., Cameron, J.A., Huang, S.J., Vinopal, R.T., Fusarium polycaprolactone depolimerase is cutinase (1996) Appl. Environ. Microbiol., 62, pp. 456-460
dc.descriptionPandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., Soccol, V.T., The realm of microbial lipases in biotechnology (1999) Biotechnol. Appl. Biochem., 29, pp. 119-131
dc.descriptionPaques, F.W., Macedo, G.A., Lipases de látex vegetais: propriedades e aplicações industriais (2006) Quím. Nova., 29, pp. 93-99
dc.descriptionPetersen, S.B., Johnson, P.H., Fojan, P., Petersen, E.I., Petersen, M.T.N., Hansen, S., Ishak, R.J., Hough, R.J., Protein engineering the surface of enzymes (1998) J. Biotechnol., 66, pp. 11-26
dc.descriptionPio, T.F., Macedo, G.A., Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology (2007) J. Ind. Microbiol. Biotechnol., 10, pp. 101-111
dc.descriptionRegado, M.A., Cristóvão, B.M., Moutinho, C.G., Balcão, V.M., Aires-Barros, R., Ferreira, J.P.M., Malcata, F.X., Flavour development via lipolysis of milk fat: Changes in free fatty acid pool (2007) Int. J. Food Sci. Technol., 42, pp. 961-968
dc.descriptionSebastião, M.J., Cabral, J.M.S., Aires-Barros, M.R., Synthesis of fatty acid esters by a recombinant cutinase in reversed micelles (1993) Biotechnol. Bioeng., 42, pp. 326-332
dc.descriptionSilva, F.A.M., Borges, F., Guimarães, C., Lima, J.L.F.C., Matos, C., Reis, S., Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters (2000) J. Agric. Food Chem., 48, pp. 2122-2126
dc.descriptionSilva, C.M., Carneiro, F., O'Neill, A., Fonseca, L.P., Cabral, J.M.S., Guebitz, G., Cavaco-Paulo, A., Cutinase-A new tool for biodegradation of synthetic fibers (2005) J. Polym. Sci., 43, pp. 2448-2450
dc.descriptionSoares, C.M., Teixeira, V.H., Baptista, A.M., Protein structure and dynamics in no aqueous solvents: Insights from molecular dynamics simulation studies (2003) Biophys. J., 84, pp. 1628-1641
dc.descriptionStamatis, H., Kolisis, F.N., Xenakis, A., Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions (1993) Biotechnol. Lett., 15, pp. 471-476
dc.descriptionStamatis, H., Sereti, V., Kolisis, F.M., Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants (1999) J. Am. Oil Chem. Soc., 12, pp. 1505-1510
dc.descriptionSung, H.H., Kao, W.Y., Su, Y.J., Effects and toxicity of phthalate esters to haemocytes of giant fresh water prawn, Macrobacillum rosenbergii (2003) Aquat. Toxicol., 64, pp. 25-37
dc.descriptionTernström, T., Svendsen, A., Akke, M., Adlercreutz, P., Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride (2005) Biochim. Biophys. Acta., 1748, pp. 74-83
dc.descriptionVandamme, E.J., Soetaert, W., Bioflavours and fragrances via fermentation and biocatalysis (2002) J. Chem. Technol. Biotechnol., 77, pp. 1323-1332
dc.descriptionVertommen, M.A.M.E., Nierstrasz, V.A., Van Der Veer, M., Warmoeskerken, M.M.C.G., Enzymatic surface modification of poly(ethylene terephtalate) (2005) J. Biotechnol., 120, pp. 376-386
dc.descriptionVilleneuve, P., Muderwha, J.M., Graille, J., Hass, M.J., Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biologic approach (2000) J. Mol. Catal. B: Enzym., 4, pp. 113-148
dc.descriptionWalz, I., Schwack, W., Cutinase inhibition by means of insecticidal organophosphates and Carbamates (2007) Eur. Food Res. Technol., 225, pp. 593-601
dc.descriptionWalz, I., Schwack, W., Cutinase inhibition by means of insecticidal organophosphates and Carbamates Part 2: Screening of representative insecticides on cutinase activity (2008) Eur. Food Res. Technol., 226, pp. 1135-1143
dc.descriptionWelsh, W.W., Murray, W.D., Williams, R.E., Microbiological and enzymatic production of flavor and fragance chemicals (1989) Crit. Rev. Biotechnol., 9, pp. 105-169
dc.descriptionWillis, W.M., Maragoni, A.G., Biotechnology & genetic engineering reviews (1999) Biotechnol. Genetic Eng. Rev., 16, pp. 141-175
dc.descriptionYoon, M., Kellis, J., Poulouse, A.J., Enzymatic modification of polyester (2002) AATCC, 2, pp. 33-36
dc.languageen
dc.publisher
dc.relationAdvances in Applied Microbiology
dc.rightsfechado
dc.sourceScopus
dc.titleChapter 4 Cutinases:. Properties And Industrial Applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución