Artículos de revistas
Sugarcane Genome Sequencing By Methylation Filtration Provides Tools For Genomic Research In The Genus Saccharum
Registro en:
Plant Journal. Blackwell Publishing Ltd, v. 79, n. 1, p. 162 - 172, 2014.
9607412
10.1111/tpj.12539
2-s2.0-84903277942
Autor
Grativol C.
Regulski M.
Bertalan M.
McCombie W.R.
Da Silva F.R.
Zerlotini Neto A.
Vicentini R.
Farinelli L.
Hemerly A.S.
Martienssen R.A.
Ferreira P.C.G.
Institución
Resumen
Many economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene-rich regions. Gene-enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using methyl-filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single-nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd. 79 1 162 172 Bartel, D.P., MicroRNAs: Genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297 Bedell, J.A., Budiman, M.A., Nunberg, A., Sorghum genome sequencing by methylation filtration (2005) PLoS Biol., 3, pp. e13 Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D., Pirovano, W., Scaffolding pre-assembled contigs using SSPACE (2011) Bioinformatics, 27, pp. 578-579 Bologna, N.G., Schapire, A.L., Palatnik, J.F., Processing of plant microRNA precursors (2013) Brief. Funct. Genomics, 12, pp. 37-45 Bombarely, A., Rosli, H.G., Vrebalov, J., Moffett, P., Mueller, L.A., Martin, G.B., A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research (2012) Mol. Plant Microbe Interact., 25, pp. 1523-1530 Bull, T.A., Glasziout, K.T., The evolutionary significance of sugar accumulation in Saccharum (1963) Aust. J. Biol. Sci., 16, pp. 737-742 Bundock, P.C., Casu, R.E., Henry, R.J., Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant (2012) Plant Biotechnol. J., 10, pp. 657-667 Butterfield, M., D'Hont, A., Berding, N., The sugarcane genome: A synthesis of current understanding, and lessons for breeding and biotechnology (2001) Proc. S. Afr. Sug. Technol. Ass., 75, pp. 1-5 Cheavegatti-Gianotto, A., De Abreu, H.M.C., Arruda, P., Sugarcane (Saccharum × officinarum): A reference study for the regulation of genetically modified cultivars in Brazil (2011) Trop. Plant Biol., 4, pp. 62-89 Cuperus, J.T., Fahlgren, N., Carrington, J.C., Evolution and functional diversification of miRNA genes (2011) Society, 23, pp. 431-442 Doyle, J.J., Flagel, L.E., Paterson, A.H., Rapp, R.A., Soltis, D.E., Soltis, P.S., Wendel, J.F., Evolutionary genetics of genome merger and doubling in plants (2008) Annu. Rev. Genet., 42, pp. 443-461 Edwards, D., Batley, J., Plant genome sequencing: Applications for crop improvement (2010) Plant Biotechnol. J., 8, pp. 2-9 Feuillet, C., Leach, J.E., Rogers, J., Schnable, P.S., Eversole, K., Crop genome sequencing: Lessons and rationales (2011) Trends Plant Sci., 16, pp. 77-88 Fu, Y., Hsia, A., Guo, L., Schnable, P.S., Types and frequencies of sequencing errors in methyl-filtered and high c0t maize genome survey sequences (2004) Plant Physiol., 135, pp. 2040-2045 Grativol, C., Hemerly, A.S., Ferreira, P.C.G., Genetic and epigenetic regulation of stress responses in natural plant populations (2012) Biochim. Biophys. Acta, 1819, pp. 176-185 Grivet, L., Arruda, P., Sugarcane genomics: Depicting the complex genome of an important tropical crop (2002) Curr. Opin. Plant Biol., 5, pp. 122-127 Hamilton, J.P., Buell, C.R., Advances in plant genome sequencing (2012) Plant J., 70, pp. 177-190 Hamilton, R.H., Kunsch, U., Temperli, A., Simple rapid procedures for isolation of tobacco leaf nuclei (1972) Anal. Biochem., 49, pp. 48-57 Jones-Rhoades, M.W., Bartel, D.P., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA (2004) Mol. Cell, 14, pp. 787-799 Kent, W.J., BLAT - The BLAST-like alignment tool (2002) Genome Res., 12, pp. 656-664 Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Law, M., Comparison of next-generation sequencing systems (2012) J. Biomed. Biotechnol., 2012, p. 251364 Luo, R., Liu, B., Xie, Y., SOAPdenov02: An empirically improved memory-efficient short-read de novo assembler (2012) Gigascience, 1, p. 18 Meng, Y., Shao, C., Wang, H., Chen, M., The regulatory activities of plant microRNAs: A more dynamic perspective (2011) Plant Physiol., 157, pp. 1583-1595 Mishra, N.S., Mukherjee, S.K., A peep into the plant miRNA world (2007) Open Plant Sci. J., 1, pp. 1-9 Moore, P.H., Integration of sucrose accumulation processes across hierarchical scales: Towards developing an understanding of the gene-to-crop continuum (2005) Field Crops Res., 92, pp. 119-135 Morrell, P.L., Buckler, E.S., Ross-Ibarra, J., Crop genomics: Advances and applications (2011) Nat. Rev. Genet., 13, pp. 85-96 Nelson, W., Luo, M., Ma, J., Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains (2008) BMC Genomics, 9, p. 621 Ouyang, S., Buell, C.R., The TIGR plant repeat databases: A collective resource for the identification of repetitive sequences in plants (2004) Nucleic Acids Res., 32, pp. D360-D363 Palmer, L.E., Rabinowicz, P.D., O'Shaughnessy, A.L., Balija, V.S., Nascimento, L.U., Dike, S., De La Bastide, M., McCombie, W.R., Maize genome sequencing by methylation filtration (2003) Science, 302, pp. 2115-2117 Papini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Sugarcane genes associated with sucrose content (2009) BMC Genomics, 10, p. 120 Peterson, D.G., Wessler, S.R., Paterson, A.H., Efficient capture of unique sequences from eukaryotic genomes (2002) Trends Genet., 18, pp. 547-550 Rabinowicz, P.D., Citek, R., Budiman, M.A., Differential methylation of genes and repeats in land plants (2005) Genome Res., 15, pp. 1431-1440 Renny-Byfield, S., Chester, M., Kovar, A., Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs (2011) Mol. Biol. Evol., 28, pp. 2843-2854 Roulin, A., Auer, P.L., Libault, M., Schlueter, J., Farmer, A., May, G., Stacey, G., Jackson, S.A., The fate of duplicated genes in a polyploid plant genome (2013) Plant J, 73, pp. 143-153 Scheibye-Alsing, K., Hoffmann, S., Frankel, A., Sequence assembly (2009) Comput. Biol. Chem., 33, pp. 121-136 Shangguan, L., Han, J., Kayesh, E., Sun, X., Zhang, C., Pervaiz, T., Wen, X., Fang, J., Evaluation of genome sequencing quality in selected plant species using expressed sequence tags (2013) PLoS One, 8, pp. e69890 Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I., ABySS: A parallel assembler for short read sequence data (2009) Genome Res., 19, pp. 1117-1123 Smith, A.M., Prospects for increasing starch and sucrose yields for bioethanol production (2008) Plant J., 54, pp. 546-558 Meyers, B.C., Souret, F., Lu, C., Green, P.J., Sweating the small stuff: MicroRNA discovery in plants (2006) Curr. Opin. Biotechnol, 17, pp. 1-8 Stanke, M., Diekhans, M., Baertsch, R., Haussler, D., Using native and syntenically mapped cDNA alignments to improve de novo gene finding (2008) Bioinformatics, 24, pp. 637-644 Thiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C.A., Tanurdzic, M., Farinelli, L., Martienssen, R.A., Ferreira, P.C., Computational identification and analysis of novel sugarcane microRNAs (2012) BMC Genomics, 13, p. 290 Thimm, O., Bläsing, O., Gibon, Y., MapMan a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J., 37, pp. 914-939 Vaucheret, H., Post-transcriptional small RNA pathways in plants: Mechanisms and regulations (2006) Genes Dev., 20, pp. 759-771 Vettore, L., Silva, F.R., Kemper, E.L., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res., 13, pp. 2725-2735 Voinnet, O., Origin, biogenesis, and activity of plant microRNAs (2009) Cell, 136, pp. 669-687 Wang, J., Roe, B., Macmil, S., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261 Wang, K., Wang, Z., Li, F., The draft genome of a diploid cotton Gossypium raimondii (2012) Nat. Genet., 44, pp. 1098-1103 Wang, Y., Wang, X., Paterson, A.H., Genome and gene duplications and gene expression divergence: A view from plants (2012) Ann. N. Y. Acad. Sci., 1256, pp. 1-14 Wei, F., Stein, J.C., Liang, C., Detailed analysis of a contiguous 22-Mb region of the maize genome (2009) PLoS Genet., 5, pp. e1000728 Young, A.L., Abaan, H.O., Zerbino, D., Mullikin, J.C., Birney, E., Margulies, E.H., A new strategy for genome assembly using short sequence reads and reduced representation libraries (2010) Genome Res., 20, pp. 249-256 Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E.V., Da Silva, M.J., Vincentz, M., Nogueira, F.T.S., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol., 10, p. 260 Zhang, G., Liu, X., Quan, Z., Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential (2012) Nat. Biotechnol., 30, pp. 549-554 Zhang, J., Arro, J., Chen, Y., Ming, R., Haplotype analysis of sucrose synthase gene family in three Saccharum species (2013) BMC Genomics, 14, p. 314 Zhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y., Yu, J., The next-generation sequencing technology and application (2010) Protein Cell, 1, pp. 520-536