dc.creatorGrativol C.
dc.creatorRegulski M.
dc.creatorBertalan M.
dc.creatorMcCombie W.R.
dc.creatorDa Silva F.R.
dc.creatorZerlotini Neto A.
dc.creatorVicentini R.
dc.creatorFarinelli L.
dc.creatorHemerly A.S.
dc.creatorMartienssen R.A.
dc.creatorFerreira P.C.G.
dc.date2014
dc.date2015-06-25T17:50:28Z
dc.date2015-11-26T15:33:11Z
dc.date2015-06-25T17:50:28Z
dc.date2015-11-26T15:33:11Z
dc.date.accessioned2018-03-28T22:41:45Z
dc.date.available2018-03-28T22:41:45Z
dc.identifier
dc.identifierPlant Journal. Blackwell Publishing Ltd, v. 79, n. 1, p. 162 - 172, 2014.
dc.identifier9607412
dc.identifier10.1111/tpj.12539
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903277942&partnerID=40&md5=c4af5346e342ab63b6a6c155fd2ca98a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85841
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85841
dc.identifier2-s2.0-84903277942
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262685
dc.descriptionMany economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene-rich regions. Gene-enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using methyl-filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single-nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
dc.description79
dc.description1
dc.description162
dc.description172
dc.descriptionBartel, D.P., MicroRNAs: Genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297
dc.descriptionBedell, J.A., Budiman, M.A., Nunberg, A., Sorghum genome sequencing by methylation filtration (2005) PLoS Biol., 3, pp. e13
dc.descriptionBoetzer, M., Henkel, C.V., Jansen, H.J., Butler, D., Pirovano, W., Scaffolding pre-assembled contigs using SSPACE (2011) Bioinformatics, 27, pp. 578-579
dc.descriptionBologna, N.G., Schapire, A.L., Palatnik, J.F., Processing of plant microRNA precursors (2013) Brief. Funct. Genomics, 12, pp. 37-45
dc.descriptionBombarely, A., Rosli, H.G., Vrebalov, J., Moffett, P., Mueller, L.A., Martin, G.B., A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research (2012) Mol. Plant Microbe Interact., 25, pp. 1523-1530
dc.descriptionBull, T.A., Glasziout, K.T., The evolutionary significance of sugar accumulation in Saccharum (1963) Aust. J. Biol. Sci., 16, pp. 737-742
dc.descriptionBundock, P.C., Casu, R.E., Henry, R.J., Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant (2012) Plant Biotechnol. J., 10, pp. 657-667
dc.descriptionButterfield, M., D'Hont, A., Berding, N., The sugarcane genome: A synthesis of current understanding, and lessons for breeding and biotechnology (2001) Proc. S. Afr. Sug. Technol. Ass., 75, pp. 1-5
dc.descriptionCheavegatti-Gianotto, A., De Abreu, H.M.C., Arruda, P., Sugarcane (Saccharum × officinarum): A reference study for the regulation of genetically modified cultivars in Brazil (2011) Trop. Plant Biol., 4, pp. 62-89
dc.descriptionCuperus, J.T., Fahlgren, N., Carrington, J.C., Evolution and functional diversification of miRNA genes (2011) Society, 23, pp. 431-442
dc.descriptionDoyle, J.J., Flagel, L.E., Paterson, A.H., Rapp, R.A., Soltis, D.E., Soltis, P.S., Wendel, J.F., Evolutionary genetics of genome merger and doubling in plants (2008) Annu. Rev. Genet., 42, pp. 443-461
dc.descriptionEdwards, D., Batley, J., Plant genome sequencing: Applications for crop improvement (2010) Plant Biotechnol. J., 8, pp. 2-9
dc.descriptionFeuillet, C., Leach, J.E., Rogers, J., Schnable, P.S., Eversole, K., Crop genome sequencing: Lessons and rationales (2011) Trends Plant Sci., 16, pp. 77-88
dc.descriptionFu, Y., Hsia, A., Guo, L., Schnable, P.S., Types and frequencies of sequencing errors in methyl-filtered and high c0t maize genome survey sequences (2004) Plant Physiol., 135, pp. 2040-2045
dc.descriptionGrativol, C., Hemerly, A.S., Ferreira, P.C.G., Genetic and epigenetic regulation of stress responses in natural plant populations (2012) Biochim. Biophys. Acta, 1819, pp. 176-185
dc.descriptionGrivet, L., Arruda, P., Sugarcane genomics: Depicting the complex genome of an important tropical crop (2002) Curr. Opin. Plant Biol., 5, pp. 122-127
dc.descriptionHamilton, J.P., Buell, C.R., Advances in plant genome sequencing (2012) Plant J., 70, pp. 177-190
dc.descriptionHamilton, R.H., Kunsch, U., Temperli, A., Simple rapid procedures for isolation of tobacco leaf nuclei (1972) Anal. Biochem., 49, pp. 48-57
dc.descriptionJones-Rhoades, M.W., Bartel, D.P., Computational identification of plant microRNAs and their targets, including a stress-induced miRNA (2004) Mol. Cell, 14, pp. 787-799
dc.descriptionKent, W.J., BLAT - The BLAST-like alignment tool (2002) Genome Res., 12, pp. 656-664
dc.descriptionLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Law, M., Comparison of next-generation sequencing systems (2012) J. Biomed. Biotechnol., 2012, p. 251364
dc.descriptionLuo, R., Liu, B., Xie, Y., SOAPdenov02: An empirically improved memory-efficient short-read de novo assembler (2012) Gigascience, 1, p. 18
dc.descriptionMeng, Y., Shao, C., Wang, H., Chen, M., The regulatory activities of plant microRNAs: A more dynamic perspective (2011) Plant Physiol., 157, pp. 1583-1595
dc.descriptionMishra, N.S., Mukherjee, S.K., A peep into the plant miRNA world (2007) Open Plant Sci. J., 1, pp. 1-9
dc.descriptionMoore, P.H., Integration of sucrose accumulation processes across hierarchical scales: Towards developing an understanding of the gene-to-crop continuum (2005) Field Crops Res., 92, pp. 119-135
dc.descriptionMorrell, P.L., Buckler, E.S., Ross-Ibarra, J., Crop genomics: Advances and applications (2011) Nat. Rev. Genet., 13, pp. 85-96
dc.descriptionNelson, W., Luo, M., Ma, J., Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains (2008) BMC Genomics, 9, p. 621
dc.descriptionOuyang, S., Buell, C.R., The TIGR plant repeat databases: A collective resource for the identification of repetitive sequences in plants (2004) Nucleic Acids Res., 32, pp. D360-D363
dc.descriptionPalmer, L.E., Rabinowicz, P.D., O'Shaughnessy, A.L., Balija, V.S., Nascimento, L.U., Dike, S., De La Bastide, M., McCombie, W.R., Maize genome sequencing by methylation filtration (2003) Science, 302, pp. 2115-2117
dc.descriptionPapini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Sugarcane genes associated with sucrose content (2009) BMC Genomics, 10, p. 120
dc.descriptionPeterson, D.G., Wessler, S.R., Paterson, A.H., Efficient capture of unique sequences from eukaryotic genomes (2002) Trends Genet., 18, pp. 547-550
dc.descriptionRabinowicz, P.D., Citek, R., Budiman, M.A., Differential methylation of genes and repeats in land plants (2005) Genome Res., 15, pp. 1431-1440
dc.descriptionRenny-Byfield, S., Chester, M., Kovar, A., Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs (2011) Mol. Biol. Evol., 28, pp. 2843-2854
dc.descriptionRoulin, A., Auer, P.L., Libault, M., Schlueter, J., Farmer, A., May, G., Stacey, G., Jackson, S.A., The fate of duplicated genes in a polyploid plant genome (2013) Plant J, 73, pp. 143-153
dc.descriptionScheibye-Alsing, K., Hoffmann, S., Frankel, A., Sequence assembly (2009) Comput. Biol. Chem., 33, pp. 121-136
dc.descriptionShangguan, L., Han, J., Kayesh, E., Sun, X., Zhang, C., Pervaiz, T., Wen, X., Fang, J., Evaluation of genome sequencing quality in selected plant species using expressed sequence tags (2013) PLoS One, 8, pp. e69890
dc.descriptionSimpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I., ABySS: A parallel assembler for short read sequence data (2009) Genome Res., 19, pp. 1117-1123
dc.descriptionSmith, A.M., Prospects for increasing starch and sucrose yields for bioethanol production (2008) Plant J., 54, pp. 546-558
dc.descriptionMeyers, B.C., Souret, F., Lu, C., Green, P.J., Sweating the small stuff: MicroRNA discovery in plants (2006) Curr. Opin. Biotechnol, 17, pp. 1-8
dc.descriptionStanke, M., Diekhans, M., Baertsch, R., Haussler, D., Using native and syntenically mapped cDNA alignments to improve de novo gene finding (2008) Bioinformatics, 24, pp. 637-644
dc.descriptionThiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C.A., Tanurdzic, M., Farinelli, L., Martienssen, R.A., Ferreira, P.C., Computational identification and analysis of novel sugarcane microRNAs (2012) BMC Genomics, 13, p. 290
dc.descriptionThimm, O., Bläsing, O., Gibon, Y., MapMan a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J., 37, pp. 914-939
dc.descriptionVaucheret, H., Post-transcriptional small RNA pathways in plants: Mechanisms and regulations (2006) Genes Dev., 20, pp. 759-771
dc.descriptionVettore, L., Silva, F.R., Kemper, E.L., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res., 13, pp. 2725-2735
dc.descriptionVoinnet, O., Origin, biogenesis, and activity of plant microRNAs (2009) Cell, 136, pp. 669-687
dc.descriptionWang, J., Roe, B., Macmil, S., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261
dc.descriptionWang, K., Wang, Z., Li, F., The draft genome of a diploid cotton Gossypium raimondii (2012) Nat. Genet., 44, pp. 1098-1103
dc.descriptionWang, Y., Wang, X., Paterson, A.H., Genome and gene duplications and gene expression divergence: A view from plants (2012) Ann. N. Y. Acad. Sci., 1256, pp. 1-14
dc.descriptionWei, F., Stein, J.C., Liang, C., Detailed analysis of a contiguous 22-Mb region of the maize genome (2009) PLoS Genet., 5, pp. e1000728
dc.descriptionYoung, A.L., Abaan, H.O., Zerbino, D., Mullikin, J.C., Birney, E., Margulies, E.H., A new strategy for genome assembly using short sequence reads and reduced representation libraries (2010) Genome Res., 20, pp. 249-256
dc.descriptionZanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E.V., Da Silva, M.J., Vincentz, M., Nogueira, F.T.S., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol., 10, p. 260
dc.descriptionZhang, G., Liu, X., Quan, Z., Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential (2012) Nat. Biotechnol., 30, pp. 549-554
dc.descriptionZhang, J., Arro, J., Chen, Y., Ming, R., Haplotype analysis of sucrose synthase gene family in three Saccharum species (2013) BMC Genomics, 14, p. 314
dc.descriptionZhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y., Yu, J., The next-generation sequencing technology and application (2010) Protein Cell, 1, pp. 520-536
dc.languageen
dc.publisherBlackwell Publishing Ltd
dc.relationPlant Journal
dc.rightsfechado
dc.sourceScopus
dc.titleSugarcane Genome Sequencing By Methylation Filtration Provides Tools For Genomic Research In The Genus Saccharum
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución