Artículos de revistas
Calcium And The Mechanotransduction In Cardiac Myocytes
Registration in:
Frontiers In Bioscience - Elite. , v. 1 E, n. 1, p. 189 - 199, 2009.
19450494
2-s2.0-77953623942
Author
Judice C.C.
Marin T.M.
Franchini K.G.
Institutions
Abstract
Mechanical stress is a major triggering stimulus for the installation of cardiac hypertrophy as well as for the structural and functional deterioration occurring in the hypertrophy decompensation. The sensing of mechanical forces and their conversion into biochemical signals depend on the integrity of subcellular structures such as the costameres and Z-disks. Signaling molecules concentrated into these structures are thought to be activated by the stress-induced deformation of structural proteins. Evidence also indicates that Ca2+ may be involved in mediating the mechanical forces conversion into biochemical signals and biological responses. Ca2+ channels, transporters and activated proteins are concentrated at the junctions between the T-tubules and the sarcoplasmic reticulum which are in close proximity to the costameres and Z-disks. This provides a structural basis for the influence of mechanical forces on Ca2+ transport and on the events related to signaling molecules clustered in the costameres and the Z-disks. Emerging data reviewed here are providing insight into how Ca2+ and mechanical mediated signaling are coordinated to modulate the functional and trophic responses of cardiac myocytes to mechanical stress. 1 E 1 189 199 Samarel, A.M., Costameres, focal adhesions, and cardiomyocyte mechanotransduction (2005) Am J Physiol Heart Circ Physiol, 289 (6), pp. H2291-H301 Hoshijima, M., Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures (2006) Am J Physiol Heart Circ Physiol, 290 (4), pp. H1313-H25 Sussman, M.A., McCulloch, A., Borg, T.K., Dance band on the Titanic: Biomechanical signaling in cardiac hypertrophy (2002) Circulation Research, 91 (10), pp. 888-898. , DOI 10.1161/01.RES.0000041680.43270.F8 Sadoshima, J., Izumo, S., The cellular and molecular response of cardiac myocytes to mechanical stress (1997) Annual Review of Physiology, 59, pp. 551-571. , DOI 10.1146/annurev.physiol.59.1.551 Frank, D., Kuhn, C., Katus, H.A., Frey, N., The sarcomeric Z-disc: A nodal point in signalling and disease (2006) Journal of Molecular Medicine, 84 (6), pp. 446-468. , DOI 10.1007/s00109-005-0033-1 Pardo, J.V., D'Angelo Siliciano, J., Craig, S.W., Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers (1983) Journal of Cell Biology, 97 (4), pp. 1081-1088 Pyle, W.G., Solaro, R.J., At the Crossroads of Myocardial Signaling: The Role of Z-Discs in Intracellular Signaling and Cardiac Function (2004) Circulation Research, 94 (3), pp. 296-305. , DOI 10.1161/01.RES.0000116143.74830.A9 Vogel, V., Mechanotransduction involving multimodular proteins: Converting force into biochemical signals (2006) Annual Review of Biophysics and Biomolecular Structure, 35, pp. 459-488. , DOI 10.1146/annurev.biophys.35.040405.102013 Shai, S.-Y., Harpf, A.E., Babbitt, C.J., Jordan, M.C., Fishbein, M.C., Chen, J., Omura, M., Ross, R.S., Cardiac myocyte-specific excision of the 1 integrin gene results in myocardial fibrosis and cardiac failure (2002) Circulation Research, 90 (4), pp. 458-464. , DOI 10.1161/hh0402.105790 Torsoni, A.S., Constancio, S.S., Nadruz Jr., W., Hanks, S.K., Franchini, K.G., Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes (2003) Circulation Research, 93 (2), pp. 140-147. , DOI 10.1161/01.RES.0000081595.25297.1B Peng, X., Kraus, M.S., Wei, H., Shen, T.-L., Pariaut, R., Alcaraz, A., Ji, G., Guan, J.-L., Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice (2006) Journal of Clinical Investigation, 116 (1), pp. 217-227. , http://www.jci.org/cgi/reprint/116/1/217, DOI 10.1172/JCI24497 DiMichele, L.A., Doherty, J.T., Rojas, M., Beggs, H.E., Reichardt, L.F., Mack, C.P., Taylor, J.M., Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy (2006) Circulation Research, 99 (6), pp. 636-645. , DOI 10.1161/01.RES.0000240498.44752.d6, PII 0000301220060915000011 Fonseca, P.M., Inoue, R.Y., Kobarg, C.B., Crosara-Alberto, D.P., Kobarg, J., Franchini, K.G., Targeting to C-terminal myosin heavy chain may explain mechanotransduction involving focal adhesion kinase in cardiac myocytes (2005) Circulation Research, 96 (1), pp. 73-81. , DOI 10.1161/01.RES.0000152390.99806.A5 Torsoni, A.S., Marin, T.M., Velloso, L.A., Franchini, K.G., RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes (2005) Am J Physiol Heart Circ Physiol, 289 (4), pp. H1488-H96 Clemente, C.F.M.Z., Tornatore, T.F., Theizen, T.H., Deckmann, A.C., Pereira, T.C., Lopes-Cences, I.T., Sousa, J.R.M., Franchini, K.G., Targeting focal adhesion kinase with siRNA prevents and reverses load-induced cardiac hypertrophy in mice (2007) Circ Res (in press) Hannigan, G.E., Coles, J.G., Dedhar, S., Integrin-linked kinase at the heart of cardiac contractility, repair, and disease (2007) Circulation Research, 100 (10), pp. 1408-1414. , DOI 10.1161/01.RES.0000265233.40455.62, PII 0000301220070525000007 Bayer, A.L., Heidkamp, M.C., Patel, N., Porter, M.J., Engman, S.J., Samarel, A.M., PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy (2002) American Journal of Physiology - Heart and Circulatory Physiology, 283 (2), pp. H695-H706 Ervasti, J.M., Costameres: The Achilles' heel of Herculean muscle (2003) Journal of Biological Chemistry, 278 (16), pp. 13591-13594. , DOI 10.1074/jbc.R200021200 Porter, G.A., Dmytrenko, G.M., Winkelmann, J.C., Bloch, R.J., Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle (1992) J Cell Biol, 117 (5), pp. 997-1005 Straub, V., Bittner, R.E., Leger, J.J., Voit, T., Direct visualization of the dystrophin network on skeletal muscle fiber membrane (1992) J Cell Biol, 119 (5), pp. 1183-1191 Rybakova, I.N., Patel, J.R., Ervasti, J.M., The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin (2000) J Cell Biol, 150 (5), pp. 1209-1214 Blake, D.J., Weir, A., Newey, S.E., Davies, K.E., Function and genetics of dystrophin and dystrophin-related proteins in muscle (2002) Physiological Reviews, 82 (2), pp. 291-329 Knoll, R., Hoshijima, M., Hoffman, H.M., Person, V., Lorenzen-Schmidt, I., Bang, M.-L., Hayashi, T., Chien, K.R., The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy (2002) Cell, 111 (7), pp. 943-955. , DOI 10.1016/S0092-8674(02)01226-6 Heineke, J., Ruetten, H., Willenbockel, C., Gross, S.C., Naguib, M., Schaefer, A., Kempf, T., Wollert, K.C., Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (5), pp. 1655-1660. , DOI 10.1073/pnas.0405488102 Wilkins, B.J., Molkentin, J.D., Calcium-calcineurin signaling in the regulation of cardiac hypertrophy (2004) Biochemical and Biophysical Research Communications, 322 (4), pp. 1178-1191. , DOI 10.1016/j.bbrc.2004.07.121, PII S0006291X04015487 LeWinter, M.M., Wu, Y., Labeit, S., Granzier, H., Cardiac titin: Structure, functions and role in disease (2007) Clinica Chimica Acta, 375 (1-2), pp. 1-9. , DOI 10.1016/j.cca.2006.06.035, PII S0009898106004086 Gregorio, C.C., Trombitas, K., Centner, T., Kolmerer, B., Stier, G., Kunke, K., Suzuki, K., Labeit, S., The NH2 terminus of titin spans the Z-disc: Its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity (1998) Journal of Cell Biology, 143 (4), pp. 1013-1027. , DOI 10.1083/jcb.143.4.1013 Mues, A., Van Der Ven, P.F.M., Young, P., Furst, D.O., Gautel, M., Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin (1998) FEBS Letters, 428 (1-2), pp. 111-114. , DOI 10.1016/S0014-5793(98)00501-8, PII S0014579398005018 Furukawa, T., Ono, Y., Tsuchiya, H., Katayama, Y., Bang, M.-L., Labeit, D., Labeit, S., Gregorio, C.C., Specific interaction of the potassium channel -subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system (2001) Journal of Molecular Biology, 313 (4), pp. 775-784. , DOI 10.1006/jmbi.2001.5053 Kontrogianni-Konstantopoulos, A., Bloch, R.J., The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin (2003) Journal of Biological Chemistry, 278 (6), pp. 3985-3991. , DOI 10.1074/jbc.M209012200 Lange, S., Xiang, F., Yakovenko, A., Vihola, A., Hackman, P., Rostkova, E., Kristensen, J., Gautel, M., Cell biology: The kinase domain of titin controls muscle gene expression and protein turnover (2005) Science, 308 (5728), pp. 1599-1603. , DOI 10.1126/science.1110463 Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signalling: Dynamics, homeostasis and remodelling (2003) Nature Reviews Molecular Cell Biology, 4 (7), pp. 517-529. , DOI 10.1038/nrm1155 Berridge, M.J., Calcium microdomains: Organization and function (2006) Cell Calcium, 40 (5-6), pp. 405-412. , DOI 10.1016/j.ceca.2006.09.002, PII S0143416006001709 Brette, F., Orchard, C., T-tubule function in mammalian cardiac myocytes (2003) Circulation Research, 92 (11), pp. 1182-1192. , DOI 10.1161/01.RES.0000074908.17214.FD Brette, F., Orchard, C., Resurgence of cardiac ttubule research (2007) Physiology (Bethesda), 22, pp. 167-173 Wang, S.-Q., Song, L.-S., Lakatta, E.G., Cheng, H., Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells (2001) Nature, 410 (6828), pp. 592-596. , DOI 10.1038/35069083 Gao, T., Puri, T.S., Gerhardstein, B.L., Chien, A.J., Green, R.D., Hosey, M.M., Identification and subcellular localization of the subunits of l-type calcium channels and adenylyl cyclase in cardiac myocytes (1997) Journal of Biological Chemistry, 272 (31), pp. 19401-19407. , DOI 10.1074/jbc.272.31.19401 Yang, J., Drazba, J.A., Ferguson, D.G., Bond, M., A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart (1998) Journal of Cell Biology, 142 (2), pp. 511-522. , DOI 10.1083/jcb.142.2.511 Laflamme, M.A., Becker, P.L., G (s) and adenylyl cyclase in transverse tubules of heart: Implications for cAMP-dependent signaling (1999) Am J Physiol, 277 (5 PART. 2), pp. H1841-H1848 Davare, M.A., Avdonin, V., Hall, D.D., Peden, E.M., Burette, A., Weinberg, R.J., Horne, M.C., Hell, J.W., A 2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav 1.2 (2001) Science, 293 (5527), pp. 98-101. , DOI 10.1126/science.293.5527.98 Barouch, L.A., Harrison, R.W., Skaf, M.W., Rosas, G.O., Cappola, T.P., Kobeissi, Z.A., Hobai, I.A., Hare, J.M., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms (2002) Nature, 416 (6878), pp. 337-339 Santana, L.F., Chase, E.G., Votaw, V.S., Nelson, M.T., Greven, R., Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes (2002) Journal of Physiology, 544 (1), pp. 57-69. , DOI 10.1113/jphysiol.2002.020552 Bauman, A.L., Michel, J.J.C., Henson, E., Dodge-Kafka, K.L., Kapiloff, M.S., The mAKAP signalosome and cardiac myocyte hypertrophy (2007) IUBMB Life, 59 (3), pp. 163-169. , DOI 10.1080/15216540701358593, PII 778368024 Boivin, B., Villeneuve, L.R., Farhat, N., Chevalier, D., Allen, B.G., Sub-cellular distribution of endothelin signaling pathway components in ventricular myocytes and heart: Lack of preformed caveolar signalosomes (2005) Journal of Molecular and Cellular Cardiology, 38 (4), pp. 665-676. , DOI 10.1016/j.yjmcc.2005.02.011 Scriven, D.R.L., Klimek, A., Asghari, P., Bellve, K., Moore, E.D.W., Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors (2005) Biophysical Journal, 89 (3), pp. 1893-1901. , DOI 10.1529/biophysj.105.064212 Calaghan, S., White, E., Caveolae modulate excitation-contraction coupling and 2- adrenergic signalling in adult rat ventricular myocytes (2006) Cardiovascular Research, 69 (4), pp. 816-824. , DOI 10.1016/j.cardiores.2005.10.006, PII S0008636305004979 Calaghan, S.C., Taggart, M.J., Compartmentalized signaling in cardiomyocyte lipid domains-Do structure and function match up? (2006) Journal of Molecular and Cellular Cardiology, 41 (1), pp. 1-3. , DOI 10.1016/j.yjmcc.2006.04.017, PII S0022282806005372 Croci, C., Brandstatter, J.H., Enz, R., ZIP3, a new splice variant of the PKC-zeta-interacting protein family, binds to GABAC receptors, PKC-zeta, and Kv beta 2 (2003) J Biol Chem, 278 (8), pp. 6128-6135 Yoshimura, Y., Shinkawa, T., Taoka, M., Kobayashi, K., Isobe, T., Yamauchi, T., Identification of protein substrates of Ca2+/calmodulin- dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry (2002) Biochemical and Biophysical Research Communications, 290 (3), pp. 948-954. , DOI 10.1006/bbrc.2001.6320 Mauceri, D., Cattabeni, F., Di Luca, M., Gardoni, F., Printed in calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines (2004) Journal of Biological Chemistry, 279 (22), pp. 23813-23821. , DOI 10.1074/jbc.M402796200 Tasken, K., Aandahl, E.M., Localized Effects of cAMP Mediated by Distinct Routes of Protein Kinase A (2004) Physiological Reviews, 84 (1), pp. 137-167. , DOI 10.1152/physrev.00021.2003 Wagner, S., Dybkova, N., Rasenack, E.C.L., Jacobshagen, C., Fabritz, L., Kirchhof, P., Maier, S.K.G., Maier, L.S., Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels (2006) Journal of Clinical Investigation, 116 (12), pp. 3127-3138. , http://www.jci.org/cgi/reprint/116/12/3127, DOI 10.1172/JCI26620 Fong, L.G., Ng, J.K., Lammerding, J., Vickers, T.A., Meta, M., Cote, N., Gavino, B., Young, S.G., Prelamin A and lamin A appear to be dispensable in the nuclear lamina (2006) Journal of Clinical Investigation, 116 (3), pp. 743-752. , http://www.jci.org/cgi/reprint/116/3/743.pdf, DOI 10.1172/JCI27125 Berridge, M.J., Remodelling Ca2+ signalling systems and cardiac hypertrophy (2006) Biochem Soc Trans, 34 (PART. 2), pp. 228-231 Tomida, T., Hirose, K., Takizawa, A., Shibasaki, F., Iino, M., NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation (2003) EMBO Journal, 22 (15), pp. 3825-3832. , DOI 10.1093/emboj/cdg381 Kostin, S., Scholz, D., Shimada, T., Maeno, Y., Mollnau, H., Hein, S., Schaper, J., The internal and external protein scaffold of the T-tubular system in cardiomyocytes (1998) Cell and Tissue Research, 294 (3), pp. 449-460. , DOI 10.1007/s004410051196 Van Der Wees, C.G.C., Bax, W.H., Van Der Valk, E.J.M., Van Der Laarse, A., Integrin stimulation induces calcium signalling in rat cardiomyocytes by a NO-dependent mechanism (2006) Pflugers Archiv European Journal of Physiology, 451 (4), pp. 588-595. , DOI 10.1007/s00424-005-1402-x Bayer, A.L., Heidkamp, M.C., Howes, A.L., Heller Brown, J., Byron, K.L., Samarel, A.M., Protein kinase C-dependent activation of proline-rich tyrosine kinase 2 in neonatal rat ventricular myocytes (2003) Journal of Molecular and Cellular Cardiology, 35 (9), pp. 1121-1133. , DOI 10.1016/S0022-2828(03)00228-1 Heidkamp, M.C., Scully, B.T., Vijayan, K., Engman, S.J., Szotek, E.L., Samarel, A.M., PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes (2005) American Journal of Physiology - Cell Physiology, 289 (2), pp. C471-C482. , DOI 10.1152/ajpcell.00130.2005 Hirotani, S., Higuchi, Y., Nishida, K., Nakayama, H., Yamaguchi, O., Hikoso, S., Takeda, T., Otsu, K., Ca2+-sensitive tyrosine kinase Pyk2/CAK -dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy (2004) Journal of Molecular and Cellular Cardiology, 36 (6), pp. 799-807. , DOI 10.1016/j.yjmcc.2004.03.002, PII S0022282804000562 Park, S.-Y., Avraham, H.K., Avraham, S., RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner (2004) Journal of Biological Chemistry, 279 (32), pp. 33315-33322. , DOI 10.1074/jbc.M313527200 Hu, H., Sachs, F., Stretch-activated ion channels in the heart (1997) Journal of Molecular and Cellular Cardiology, 29 (6), pp. 1511-1523. , DOI 10.1006/jmcc.1997.0392 Woolf, P.J., Lu, S., Cornford-Nairn, R., Watson, M., Xiao, X.H., Holroyd, S.M., Brown, L., Hoey, A.J., Alterations in dihydropyridine receptors in dystrophin-deficient cardiac muscle (2006) Am J Physiol Heart Circ Physiol, 290 (6), pp. H2439-H45 Williams, I.A., Allen, D.G., Intracellular calcium handling in ventricular myocytes from mdx mice (2007) Am J Physiol Heart Circ Physiol, 292 (2), pp. H846-H855 Franco-Obregon Jr., A., Lansman, J.B., Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice (1994) J Physiol, 481 (PART. 2), pp. 299-309 Vandebrouck, C., Duport, G., Cognard, C., Raymond, G., Cationic channels in normal and dystrophic human myotubes (2001) Neuromuscular Disorders, 11 (1), pp. 72-79. , DOI 10.1016/S0960-8966(00)00153-X, PII S096089660000153X Yasuda, S., Townsend, D., Michele, D.E., Favre, E.G., Day, S.M., Metzger, J.M., Dystrophic heart failure blocked by membrane sealant poloxamer (2005) Nature, 436 (7053), pp. 1025-1029. , DOI 10.1038/nature03844 Frey, N., Richardson, J.A., Olson, E.N., Calsarcins, a novel family of sarcomeric calcineurin-binding proteins (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (26), pp. 14632-14637. , DOI 10.1073/pnas.260501097 Faulkner, G., Pallavicini, A., Comelli, A., Salamon, M., Bortoletto, G., Ievolella, C., Trevisan, S., Lanfranchi, G., FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle (2000) Journal of Biological Chemistry, 275 (52), pp. 41234-41242. , DOI 10.1074/jbc.M007493200 Frey, N., Olson, E.N., Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins (2002) Journal of Biological Chemistry, 277 (16), pp. 13998-14004. , DOI 10.1074/jbc.M200712200 Takada, F., Vander Woude, D.L., Tong, H.-Q., Thompson, T.G., Watkins, S.C., Kunkel, L.M., Beggs, A.H., Myozenin: An -actinin- and -filamin-binding protein of skeletal muscle Z lines (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (4), pp. 1595-1600. , DOI 10.1073/pnas.041609698 Frey, N., Barrientos, T., Shelton, J.M., Frank, D., Rutten, H., Gehring, D., Kuhn, C., Olson, E.N., Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress (2004) Nature Medicine, 10 (12), pp. 1336-1343. , DOI 10.1038/nm1132 Young, P., Ehler, E., Gautel, M., Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly (2001) Journal of Cell Biology, 154 (1), pp. 123-136. , DOI 10.1083/jcb.200102110 Russell, M.W., Raeker, M.O., Korytkowski, K.A., Sonneman, K.J., Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases (2002) Gene, 282 (1-2), pp. 237-246. , DOI 10.1016/S0378-1119(01)00795-8, PII S0378111901007958 Bagnato, P., Barone, V., Giacomello, E., Rossi, D., Sorrentino, V., Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles (2003) Journal of Cell Biology, 160 (2), pp. 245-253. , DOI 10.1083/jcb.200208109 Mohler, P.J., Gramolini, A.O., Bennett, V., The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B (-/-) neonatal cardiomyocytes (2002) Journal of Biological Chemistry, 277 (12), pp. 10599-10607. , DOI 10.1074/jbc.M110958200 Arber, S., Halder, G., Caroni, P., Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation (1994) Cell, 79 (2), pp. 221-231. , DOI 10.1016/0092-8674(94)90192-9 Kawamura, S., Miyamoto, S., Brown, J.H., Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae. Cytoskeletal regulation of ERK translocation (2003) Journal of Biological Chemistry, 278 (33), pp. 31111-31117. , DOI 10.1074/jbc.M300725200 Feron, O., Balligand, J.-L., Caveolins and the regulation of endothelial nitric oxide synthase in the heart (2006) Cardiovascular Research, 69 (4), pp. 788-797. , DOI 10.1016/j.cardiores.2005.12.014, PII S0008636305006000 Kudoh, S., Akazawa, H., Takano, H., Zou, Y., Toko, H., Nagai, T., Komuro, I., Stretch-modulation of second messengers: Effects on cardiomyocyte ion transport (2003) Progress in Biophysics and Molecular Biology, 82 (1-3), pp. 57-66. , DOI 10.1016/S0079-6107(03)00005-1 Lim, H.W., De Windt, L.J., Steinberg, L., Taigen, T., Witt, S.A., Kimball, T.R., Molkentin, J.D., Calcineurin expression, activation, and function in cardiac pressure- overload hypertrophy (2000) Circulation, 101 (20), pp. 2431-2437 Meguro, T., Hong, C., Asai, K., Takagi, G., McKinsey, T.A., Olson, E.N., Vatner, S.F., Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure (1999) Circulation Research, 84 (6), pp. 735-740 Hongo, K., White, E., Le Guennec, J.Y., Orchard, C.H., Changes in (Ca2+) i, (Na+) i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length (1996) J Physiol, 491 (PART. 3), pp. 609-619 Sollott, S.J., Lakatta, E.G., Novel method to alter length and load in isolated mammalian cardiac myocytes (1994) Am J Physiol, 267 (4 PART. 2), pp. H1619-H29 Allen, D.G., Kurihara, S., The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle (1982) Journal of Physiology, 327, pp. 79-94 Kentish, J.C., Wrzosek, A., Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae (1998) Journal of Physiology, 506 (2), pp. 431-444. , DOI 10.1111/j.1469-7793.1998.431bw.x Calaghan, S.C., Belus, A., White, E., Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? (2003) Progress in Biophysics and Molecular Biology, 82 (1-3), pp. 81-95. , DOI 10.1016/S0079-6107(03)00007-5 Matsuda, N., Hagiwara, N., Shoda, M., Kasanuki, H., Hosoda, S., Enhancement of the L-type Ca2+ current by mechanical stimulation in single rabbit cardiac myocytes (1996) Circ Res, 78 (4), pp. 650-659 Lab, M.J., Zhou, B.Y., Spencer, C.I., Horner, S.M., Seed, W.A., Effects of gadolinium on length-dependent force in guinea-pig papillary muscle (1994) Experimental Physiology, 79 (2), pp. 249-255 Alvarez, B.V., Perez, N.G., Ennis, I.L., Camilion De Hurtado, M.C., Cingolani, H.E., Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: A possible explanation of the Anrep effect (1999) Circulation Research, 85 (8), pp. 716-722 Calaghan, S., White, E., Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart (2004) Journal of Physiology, 559 (1), pp. 205-214. , DOI 10.1113/jphysiol.2004.069021 Perez, N.G., De Hurtado, M.C.C., Cingolani, H.E., Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: Underlying mechanism of the slow force response (2001) Circulation Research, 88 (4), pp. 376-382 Von Lewinski, D., Stumme, B., Maier, L.S., Luers, C., Bers, D.M., Pieske, B., Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent (2003) Cardiovascular Research, 57 (4), pp. 1052-1061. , DOI 10.1016/S0008-6363(02)00830-1 Petrecca, K., Atanasiu, R., Grinstein, S., Orlowski, J., Shrier, A., Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium (1999) American Journal of Physiology - Heart and Circulatory Physiology, 276 (2), pp. H709-H717 Bers, D.M., Barry, W.H., Despa, S., Intracellular Na+ regulation in cardiac myocytes (2003) Cardiovasc Res, 57 (4), pp. 897-912 Ennis, I.L., Garciarena, C.D., Escudero, E.M., Perez, N.G., Dulce, R.A., De Hurtado, M.C.C., Cingolani, H.E., Normalization of the calcineurin pathway underlies the regression of hypertensive hypertrophy induced by Na+/H+ exchanger-1 (NHE-1) inhibition (2007) Canadian Journal of Physiology and Pharmacology, 85 (3-4), pp. 301-310. , DOI 10.1139/Y06-072 Spassova, M.A., Hewavitharana, T., Xu, W., Soboloff, J., Gill, D.L., A common mechanism underlies stretch activation and activation of TRPC6 channels (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (44), pp. 16586-16591. , DOI 10.1073/pnas.0606894103 Kuwahara, K., Wang, Y., McAnally, J., Richardson, J.A., Bassel-Duby, R., Hill, J.A., Olson, E.N., TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling (2006) Journal of Clinical Investigation, 116 (12), pp. 3114-3126. , http://www.jci.org/cgi/reprint/116/12/3114, DOI 10.1172/JCI27702 Brenner, J.S., Dolmetsch, R.E., TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size (2007) PLoS ONE, 2 (8), pp. e802 Muth, J.N., Bodi, I., Lewis, W., Varadi, G., Schwartz, A., A Ca2+-dependent transgenic model of cardiac hypertrophy: A role for protein kinase C (2001) Circulation, 103 (1), pp. 140-147 Nakayama, H., Chen, X., Baines, C.P., Klevitsky, R., Zhang, X., Zhang, H., Jaleel, N., Molkentin, J.D., Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure (2007) Journal of Clinical Investigation, 117 (9), pp. 2431-2444. , http://www.jci.org/cgi/reprint/117/9/2431, DOI 10.1172/JCI31060 Fatkin, D., McConnell, B.K., Mudd, J.O., Semsarian, C., Moskowitz, I.G., Schoen, F.J., Giewat, M., Seidman, J.G., An abnormal Ca (2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy (2000) J Clin Invest, 106 (11), pp. 1351-1359 Massart, P.-E., Donckier, J., Kyselovic, J., Godfraind, T., Heyndrickx, G.R., Wibo, M., Carvedilol and lacidipine prevent cardiac hypertrophy and endothelin-1 gene overexpression after aortic banding (1999) Hypertension, 34 (6), pp. 1197-1201 Shimada, T., Yoshiyama, M., Takeuchi, K., Omura, T., Takemoto, Y., Shokei, K., Iwao, H., Yoshikawa, J., Long acting calcium antagonist amlodipine prevents left ventricular remodeling after myocardial infarction in rats (1998) Cardiovascular Research, 37 (3), pp. 618-626. , DOI 10.1016/S0008-6363(97)00247-2, PII S0008636397002472 Hinken, A.C., Solaro, R.J., A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation (2007) Physiology (Bethesda), 22, pp. 73-80 Peterson, J.N., Hunter, W.C., Berman, M.R., Estimated time course of Ca2+ bound to troponin C during relaxation in isolated cardiac muscle (1991) Am J Physiol, 260 (3 PART. 2), pp. H1013-H24