Artículos de revistas
Human 90 Kda Heat Shock Protein Hsp90 As A Target For Cancer Therapeutics
Registro en:
Current Chemical Biology. , v. 3, n. 1, p. 10 - 21, 2009.
18723136
2-s2.0-65549114190
Autor
Gava L.M.
Ramos C.H.I.
Institución
Resumen
Protein misfolding causes a phenotype of disorders that is modulated by the action of multi-complexes formed by molecular chaperones and the proteasome machine. Hsp90 is a molecular chaperone involved in maintaining folding, stability and function of many proteins involved in apoptosis, signal-transduction pathways and cell-cycle regulation. Many of these proteins are usually deregulated in cancers and by keeping them active Hsp90 helps the stabilization of tumorogenic cells. Therefore, inhibition of Hsp90 will result in degradation of its client proteins via the proteasome followed by a down regulation of several properties of the malignant phenotype. As a consequence, Hsp90 has been considered to be an appealing target for cancer therapeutics because its inhibition can affect multiple oncogenic pathways simultaneously. Major efforts have generated Hsp90 inhibitors that passed Phase I clinical trials and have entered Phase II trials. Furthermore, other compounds are in development to improve efficacy as antitumor agents. In conclusion, the development of Hsp90 inhibitors is considered to be a good example of medicinal chemistry. Specific important aspects of Hsp90 structure and function, the role of the chaperone in cancer and the development of Hsp90 inhibitors that causes growth arrest and apoptosis in cancer cells are discussed. © 2009 Bentham Science Publishers Ltd. 3 1 10 21 Ramos, C.H.I., Ferreira, S.T., Protein folding, misfolding and aggregation: Evolving concepts and conformational diseases (2005) Protein Pept Lett, 12, pp. 213-222 Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions (2005) Nat Rev Mol Cell Biol, 6, pp. 197-208 Fandrich, M., Fletcher, M.A., Dobson, C.M., Amyloid fibrils from muscle myoglobin (2001) Nature, 410, pp. 165-166 Fandrich, M., Dobson, C.M., The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation (2002) EMBO J, 21, pp. 5682-5690 Dobson, C.M., Experimental investigation of protein folding and misfolding (2004) Methods, 34, pp. 4-14 Minton, A.P., Implications of macromolecular crowding for protein assembly (2000) Curr Op Struct Biol, 10, pp. 34-39 Prusiner, S.B., Shattuck lecture - neurodegenerative diseases and prions (2001) N Engl J Med, 344, pp. 1516-1526 Beissinger, M., Buchner, J., How chaperones fold proteins (1998) Biol Chem, 379, pp. 245-259 Hartl, F.U., Hayer-Hartl, M., Molecular chaperones in the cytosol, from nascent chain to folded protein (2002) Science, 295, pp. 1852-1858 Borges, J.C., Ramos, C.H.I., Protein folding assisted by chaperones (2008) Protein Pept Lett, 12, pp. 256-261 Borges, J.C., Peroto, M.C., Ramos, C.H.I., Molecular Chaperone Genes in the SugarCane Expressed Sequence Database (SUCEST) (2001) Gen Mol Biol, 24, pp. 85-92 Borges, J.C., Cagliari, T.C., Ramos, C.H.I., Expression and variability of molecular chaperones in the sugarcane expressome (2007) J Plant Physiol, 164, pp. 505-513 Cagliari, T.C., Tiroli, A.O., Borges, J.C., Ramos, C.H.I., Identification and in silico expression analysis of eucalyptus expressed sequencing tags (ESTs) encoding molecular chaperones (2005) Gen Mol Biol, 28, pp. 520-528 Csermely, P., Chaperone overload is a possible contributor to 'civilization diseases' (2001) Trends Genet, 17, pp. 701-704 Chaduri, T.K., Paul, S., Protein-misfolding diseases and chaperone-base therapeutic approaches (2006) FEBS J, 273, pp. 1331-1349 Sõti, C., Nagy, E., Giricz, Z., Vígh, L., Csermely, P., Ferdinandy, P., Heat shock proteins as emerging therapeutic targets (2005) Br J Pharmacol, 146, pp. 769-780 Macario, A.J.L., de Macario, E.C., Chaperonophaties and chaperonotherapy (2007) FEBS Lett, 581, pp. 3681-3688 Powers, M.V., Workman, P., Inhibitors of the heat shock response: Biology and pharmacology (2007) FEBS Lett, 581, pp. 3758-3769 Turbyville, T.J., Wijeratne, E.M., Whitesell, L., Gunatilaka, A.A., The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways (2005) Mol Cancer Ther, 4, pp. 1569-1576 Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., Celastrols as inducers of the heat shock response and cytoprotection (2004) J Biol Chem, 279, pp. 56053-56060 Nagai, N., Nakai, A., Nagata, K., Quercetin suppresses heat shock response by down regulation of HSF1 (1995) Biochem Biophys Res Commun, 208, pp. 1099-1105 Dechsupa, S., Kothan, S., Vergote, J., Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-MB-435 cells xenograft in vivo (2007) Cancer Biol Ther, 6, pp. 56-61 Prodromou, C., Pearl, L.H., Structure and functional relationships of Hsp90 (2003) Curr Cancer Drug Targets, 3, pp. 301-323 Prodomou, C., Roe, S.M., O'brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone (1997) Cell, 90, pp. 65-75 Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., Pavletich, N.P., Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent (1997) Cell, 89, pp. 239-250 Marcu, M.G., Chadli, A., Bouhouche, I., Catelli, M., Neckers, L.M., The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone (2000) J Biol Chem, 275, pp. 37181-37186 Garnier, C., Lafitte, D., Tsvetkov, P.O., Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain (2002) J Biol Chem, 277, pp. 12208-12214 Soti, C., Racz, A., Csermely, P., A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket (2002) J Biol Chem, 277, pp. 7066-7075 Obermann, W.M., Sondermann, H., Russo, A.A., Pavletich, N.P., Hartl, F.U., In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis (1998) J Cell Biol, 143, pp. 901-910 Jez, J.M., Chen, J.C., Rastelli, G., Stroud, R.M., Santi, D.V., Crystal Structure and Molecular Modeling of 17-DMAG in Complex with Human Hsp90 (2003) Chem Biol, 10, pp. 361-368 Boston, R.S., Viitanen, P.V., Vierling, E., Molecular chaperones and protein folding in plants (1996) Plant Mol Biol, 32, pp. 191-222 Sreedhar, A.S., Kalmár, E., Csermely, P., Shen, Y.F., Hsp90 isoforms: Functions, expression and clinical importance (2004) FEBS Lett, 562, pp. 11-15 Eustace, B.K., Sakurai, T., Stewart, J.K., Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness (2004) Nat Cell Biol, 6, pp. 507-514 Wegele, H., Müller, L., Buchner, J., Hsp70 and Hsp90 - a relay team for protein folding (2004) Rev Physiol Biochem Pharmacol, 151, pp. 1-44 Wandinger, S.K., Richter, K., Buchner, J., The Hsp90 chaperone machinery (2008) J Biol Chem, 283, pp. 18473-18477 Chiosis, G., Vilenchik, M., Kim, J., Solit, D., Hsp90: The vulnerable chaperone (2004) Drug Discov Today, 9, pp. 881-888 Russell, L.C., Whitt, S.R., Chen, M.S., Chinkers, M., Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90 (1999) J Biol Chem, 274, pp. 20060-20063 Panaretou, B., Siligardi, G., Meyer, P., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1 (2002) Mol Cell, 10, pp. 1307-1318 Kamal, A., Thao, L., Sensintaffar, J., A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors (2003) Nature, 425, pp. 407-410 Zhao, R., Davey, M., Hsu, Y.C., Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727 Whitesell, L., Lindquist, S.L., HSP90 and the chaperoning of cancer (2005) Nat Rev Cancer, 5, pp. 761-772 Pratt, W.B., The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors (1998) Proc Soc Exp Biol Med, 217, pp. 420-434 Nardai, G., Végh, E.M., Prohászka, Z., Csermely, P., Chaperone-related immune dysfunction: An emergent property of distorted chaperone networks.Trends (2006) Immunol, 27, pp. 74-79 Citri, A., Harari, D., Shohat, G., Hsp90 recognizes a common surface on client kinases (2006) J Biol Chem, 281, pp. 14361-14369 Pearl, L.H., Prodromou, C., Workman, P., The Hsp90 molecular chaperone: An open and shut case for treatment (2008) Biochem J, 410, pp. 439-453 Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review (1998) Pharmacol Ther, 79, pp. 129-168 Buchner J. Hsp90 & Co. a holding for folding. Trends Biochem Sci 1999 24: 136-41Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70 Workman, P., Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone (2004) Cancer Lett, 206, pp. 149-157 Sharp, S., Workman, P., Inhibitors of the HSP90 molecular chaperone: Current status (2006) Adv Cancer Res, 95, pp. 323-348 Neckers, L., Heat shock protein 90: The cancer chaperone (2007) J Biosci, 32, pp. 517-530 Fortugno, P., Beltrami, E., Plescia, J., Regulation of survivin function by Hsp90 (2003) Proc Natl Acad Sci, 100, pp. 13791-13796 Becker, B., Multhoff, G., Farkas, B., Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases (2004) Exp Dermatol, 13, pp. 27-32 Eustace, B.K., Jay, D.G., Extracellular roles for the molecular chaperone, hsp90 (2004) Cell Cycle, 3, pp. 1098-1100 Sreedhar, A.S., Csermely, P., Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: a comprehensive review (2004) Pharmacol Ther, 101, pp. 227-257 Munster, P.N., Basso, A., Solit, D., Norton, L., Rosen, N., Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner (2001) Clin Cancer Res, 7, pp. 2228-2236 Munster, P.N., Marchion, D.C., Basso, A.D., Rosen, N., Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase-AKT-dependent pathway (2002) Cancer Res, 62, pp. 3132-3137 Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function (2002) J Biol Chem, 277, pp. 39858-39866 Sreedhar, A.S., Mihaly, K., Pato, B., Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events (2003) J Biol Chem, 278, pp. 35231-35240 Sreedhar, A.S., Nardai, G., Csermely, P., Enhancement of complement-induced cell lysis: A novel mechanism for the anticancer effects of Hsp90 inhibitors (2004) Immunol Lett, 92, pp. 157-161 Csermely, P., Agoston, V., Pongor, S., The efficiency of multi-target drugs: The network approach might help drug design (2005) Trends Pharmacol Sci, 26, pp. 178-182 Neckers, L., Neckers, K., Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics - an update (2005) Expert Opin Emerg Drugs, 10, pp. 137-149 Janin, Y.L., Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? (2005) J Med Chem, 48, pp. 7503-7512 Solit, D.B., Chiosis, G., Development and application of Hsp90 inhibitors (2008) Drug Discov Today, 13, pp. 38-43 Wehrli W. Ansamycins. Chemistry, biosynthesis and biological activity.Top Curr Chem 1977 72: 21-49Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone (1997) Cell, 90, pp. 65-75 Sasaki, K., Yasuda, H., Onodera, K., Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives (1979) J Antibiot, 32, pp. 849-851 Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E., Neckers, L.M., Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation (1994) Proc Natl Acad Sci, 91, pp. 8324-8328 Bagatell, R., Paine-Murrieta, G.D., Taylor, C.W., Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents (2000) Clin Cancer Res, 6, pp. 3312-3318 Sittler, A., Lurz, R., Lueder, G., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease (2001) Hum Mol Genet, 10, pp. 1307-1315 Neckers, L., Ivy, S.P., Heat shock protein 90 (2003) Curr Opin Oncol, 15, pp. 419-424 Supko, J.G., Hickman, R.L., Grever, M.R., Malspeis, L., Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent (1995) Cancer Chemother Pharmacol, 36, pp. 305-315 Egorin, M.J., Zuhowski, E.G., Rosen, D.M., Sentz, D.L., Covey, J.M., Eiseman, J.L., Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1 (2001) Cancer Chemother Pharmacol, 47, pp. 291-302 Patel, K., Piagentini, M., Rascher, A., Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition (2004) Chem Biol, 11, pp. 1625-1633 Xie, Q., Gao, C.F., Shinomiya, N., Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion (2005) Oncogene, 24, pp. 3697-3707 Schulte, T.W., Neckers, L.M., The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin (1998) Cancer Chemother Pharmacol, 42, pp. 273-279 Chiosis, G., Huezo, H., Rosen, N., Mimnaugh, E., Whitesell, L., Neckers, L., 17AAG: Low target binding affinity and potent cell activity - finding an explanation (2003) Mol Cancer Ther, 2, pp. 123-129 Workman, P., Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: Unfolding the relationship between pharmacokinetics and pharmacodynamics (2003) Mol Cancer Ther, 2, pp. 131-138 Banerji, U., O'donnell, A., Scurr, M., Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies (2005) J Clin Oncol, 23, pp. 4152-4161 Sausville, E.A., Tomaszewski, J.E., Ivy, P., Clinical development of 17-allylamino, 17-demethoxygeldanamycin (2003) Curr Cancer Drug Targets, 3, pp. 377-383 Modi, S., Stopeck, A.T., Gordon, M.S., Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: A phase I dose-escalation study (2007) J Clin Oncol, 25, pp. 5410-5417 Powers, M.V., Workman, P., Inhibitors of the heat shock response: Biology and pharmacology (2007) FEBS Lett, 581, pp. 3758-3769 Banerji, U., Affolter, A., Judson, I., Marais, R., Workman, P., BRAF and NRAS mutations in melanoma: Potential relationships to clinical response to HSP90 inhibitors (2008) Mol Cancer Ther, 7, pp. 737-739 De Candia, P., Solit, D.B., Giri, D., Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors (2003) Proc Natl Acad Sci, 100, pp. 12337-12342 Bisht, K.S., Bradbury, C.M., Mattson, D., Geldanamycin and 17- allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signalling and cytotoxicity (2003) Cancer Res, 63, pp. 8984-8995 Smith, V., Sausville, E.A., Camalier, R.F., Fiebig, H.H., Burger, A.M., Comparison of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: Effects on Hsp90 and client proteins in melanoma models (2005) Cancer Chemother Pharmacol, 56 (2), pp. 126-137 Egorin, M.J., Lagattuta, T.F., Hamburger, D.R., Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino) -17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats (2002) Cancer Chemother Pharmacol, 49 (1), pp. 7-19 Phillips, J.J., Yao, Z.P., Zhang, W., Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs (2007) J Mol Biol, 372 (5), pp. 1189-1203 Delmotte, P., Delmotte-Plaque, J., A new antifungal substance of fungal origin (1953) Nature, 171, p. 344 Kwon, H.J., Yoshida, M., Abe, K., Horinouchi, S., Beppu, T., Radicicol, an agent inducing the reversal of transformed phenotypes of src-transformed fibroblasts (1992) Biosci Biotechnol Biochem, 56 (3), pp. 538-539 Soga, S., Neckers, L.M., Schulte, T.W., KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules (1999) Cancer Res, 59 (12), pp. 2931-2938 Agatsuma, T., Ogawa, H., Akasaka, K., Halohydrin and oxime derivatives of radicicol: Synthesis and antitumor activities (2002) Bioorg Med Chem, 10 (11), pp. 3445-3454 Soga, S., Shiotsu, Y., Akinaga, S., Sharma, S.V., Development of radicicol analogues (2003) Curr Cancer Drug Targets, 3 (5), pp. 359-369 Marcu, M.G., Schulte, T.W., Neckers, L., Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins (2000) J Natl Cancer Inst, 92 (3), pp. 242-248 Yu, X.M., Shen, G., Neckers, L., Hsp90 inhibitors identified from a library of novobiocin analogues (2005) J Am Chem Soc, 127 (37), pp. 12778-12779 Llauger, L., He, H., Kim, J., Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90 (2005) J Med Chem, 48 (8), pp. 2892-2905 He, H., Zatorska, D., Kim, J., Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90 (2006) J Med Chem, 49 (1), pp. 381-390 Sharp, S.Y., Prodromou, C., Boxall, K., Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues (2007) Mol Cancer Ther, 6 (4), pp. 1198-1211 Eccles, S.A., Massey, A., Raynaud, F.I., NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis (2008) Cancer Res, 68 (8), pp. 2850-2860 Martin, C.J., Gaisser, S., Challis, I.R., Molecular characterization of macbecin as an hsp90 inhibitor (2008) J Med Chem, 51 (9), pp. 2853-2857 Modi, S., Stopeck, A.T., Gordon, M.S., Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: A phase I dose-escalation study (2007) J Clin Oncol, 25 (34), pp. 5410-5417 Sydor, J.R., Normant, E., Pien, C.S., Development of 17- allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90 (2006) Proc Natl Acad Sci, 103 (46), pp. 17408-17413 Onodera, H., Kaneko, M., Takahashi, Y., Conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin, for Hsp90 inhibitory activity (2008) Bioorg Med Chem Lett, 18 (5), pp. 1577-1580 Banerji, U., Sain, N., Sharp, S.Y., An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino- 17-demethoxygeldanamycin and carboplatin in human ovarian cancer models (2008) Cancer Chemother Pharmacol, 62 (5), pp. 769-778 Chandarlapaty, S., Sawai, A., Ye, Q., SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers (2008) Clin Cancer Res, 14 (1), pp. 240-248 Yu, X., Guo, Z.S., Marcu, M.G., Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228 (2002) J Natl Cancer Inst, 94 (7), pp. 504-513 Aoyagi, S., Trevor, K., Archer Modulating molecular chaperone Hsp90 functions through reversible acetylation (2005) Trends in Cell Biology, 15 (11), pp. 565-567 Martínez-Ruiz, A., Villanueva, L., González de Orduña, C., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities (2005) Proc Natl Acad Sci, 102 (24), pp. 8525-8530 Legagneux, V., Morange, M., Bensaude, O., Heat shock increases turnover of 90 kDa heat shock protein phosphate groups in HeLa cells (1991) FEBS Lett, 291 (2), pp. 359-362 Zhao, Y.G., Gilmore, R., Leone, G., Coffey, M.C., Weber, B., Lee, P.W., Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein (2001) J Biol Chem, 276 (35), pp. 32822-32827 Kurokawa, M., Zhao, C., Reya, T., Kornbluth, S., Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias (2008) Mol Cell Biol, 28 (17), pp. 5494-5506 Beere, H., Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways (2005) J Clin Invest, 115, pp. 2633-2639 Gorre, M.E., Ellwood-Yen, K., Chiosis, G., Rosen, N., Sawyers, C.L., BCRABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90 (2002) Blood, 100, pp. 3041-3044 Srivastava, P.K., Maki, R.G., Stress-induced proteins in immune response to cancer.Curr Top (1991) Microbiol Immunol, 167, pp. 109-123 Ishii, T., Udono, H., Yamano, T., Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96 (1999) J Immunol, 162 (3), pp. 1303-1309 Callahan, M.K., Garg, M., Srivastava, P.K., (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation.Proc Natl Acad Sci, 105 (5), pp. 1662-1667 Brodsky, J.L., Chiosis, G., Hsp70 molecular chaperones: Emerging roles in human disease and identification of small molecule modulators (2006) Curr Top Med Chem, 6, pp. 1215-1225 Johnson, J.L., Beito, T.G., Krco, C.J., Toft, D.O., Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes (1994) Mol Cell Biol, 14, pp. 1956-1963 Kimura, Y., Rutherford, S.L., Miyata, Y., Cdc37 is a molecular chaperone with specific functions in signal transduction (1997) Genes Dev, 14, pp. 1775-1785 Mayer, M.P., Nikolay, R., Bukau, B., Aha, another regulator for hsp90 chaperones (2002) Mol Cell, 6, pp. 1255-1256 Perdew GH, Whitelaw ML. Evidence that the 90-kDa heat shock protein (HSP90) exists in cytosol in heteromeric complexes containing HSP70 and three other proteins with Mr of 63,000,56,000, and 50,000. J Biol Chem 1991 266: 6708-13Johnson, B.D., Schumacher, R.J., Ross, E.D., Toft, D.O., Hop modulates Hsp70/Hsp90 interactions in protein folding (1998) J Biol Chem, 6, pp. 3679-3686 Young, J.C., Hoogenraad, N.J., Hartl, F.U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70 (2003) Cell, 1, pp. 41-50 Catlett, M.G., Kaplan, K.B., Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p (2006) J Biol Chem, 44, pp. 33739-33748 Liu L, Srikakulam R, Winkelmann DA. Unc45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chemjavascript:AL_get(this, 'jour', 'J Biol Chem.') 2008 19: 13185-93Pirkl, F., Buchner, J., Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40 (2001) J Mol Biol, 4, pp. 795-806 Warth, R., Briand, P.A., Picard, D., Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation (1997) Biol Chem, 5, pp. 381-391 Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin (1997) J Biol Chem, 26, pp. 16224-16230 Connell, P., Ballinger, C.A., Jiang, J., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins (2001) Nat Cell Biol, 3, pp. 93-96 Rosser, M.F., Washburn, E., Muchowski, P.J., Patterson, C., Cyr, D.M., Chaperone functions of the E3 ubiquitin ligase CHIP (2007) J Biol Chem, 31, pp. 22267-22277