dc.creator | Gava L.M. | |
dc.creator | Ramos C.H.I. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:33:22Z | |
dc.date | 2015-11-26T15:32:29Z | |
dc.date | 2015-06-26T13:33:22Z | |
dc.date | 2015-11-26T15:32:29Z | |
dc.date.accessioned | 2018-03-28T22:40:57Z | |
dc.date.available | 2018-03-28T22:40:57Z | |
dc.identifier | | |
dc.identifier | Current Chemical Biology. , v. 3, n. 1, p. 10 - 21, 2009. | |
dc.identifier | 18723136 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-65549114190&partnerID=40&md5=cb5092b51eb260d405b0fb21afab126e | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/91710 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/91710 | |
dc.identifier | 2-s2.0-65549114190 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1262491 | |
dc.description | Protein misfolding causes a phenotype of disorders that is modulated by the action of multi-complexes formed by molecular chaperones and the proteasome machine. Hsp90 is a molecular chaperone involved in maintaining folding, stability and function of many proteins involved in apoptosis, signal-transduction pathways and cell-cycle regulation. Many of these proteins are usually deregulated in cancers and by keeping them active Hsp90 helps the stabilization of tumorogenic cells. Therefore, inhibition of Hsp90 will result in degradation of its client proteins via the proteasome followed by a down regulation of several properties of the malignant phenotype. As a consequence, Hsp90 has been considered to be an appealing target for cancer therapeutics because its inhibition can affect multiple oncogenic pathways simultaneously. Major efforts have generated Hsp90 inhibitors that passed Phase I clinical trials and have entered Phase II trials. Furthermore, other compounds are in development to improve efficacy as antitumor agents. In conclusion, the development of Hsp90 inhibitors is considered to be a good example of medicinal chemistry. Specific important aspects of Hsp90 structure and function, the role of the chaperone in cancer and the development of Hsp90 inhibitors that causes growth arrest and apoptosis in cancer cells are discussed. © 2009 Bentham Science Publishers Ltd. | |
dc.description | 3 | |
dc.description | 1 | |
dc.description | 10 | |
dc.description | 21 | |
dc.description | Ramos, C.H.I., Ferreira, S.T., Protein folding, misfolding and aggregation: Evolving concepts and conformational diseases (2005) Protein Pept Lett, 12, pp. 213-222 | |
dc.description | Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions (2005) Nat Rev Mol Cell Biol, 6, pp. 197-208 | |
dc.description | Fandrich, M., Fletcher, M.A., Dobson, C.M., Amyloid fibrils from muscle myoglobin (2001) Nature, 410, pp. 165-166 | |
dc.description | Fandrich, M., Dobson, C.M., The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation (2002) EMBO J, 21, pp. 5682-5690 | |
dc.description | Dobson, C.M., Experimental investigation of protein folding and misfolding (2004) Methods, 34, pp. 4-14 | |
dc.description | Minton, A.P., Implications of macromolecular crowding for protein assembly (2000) Curr Op Struct Biol, 10, pp. 34-39 | |
dc.description | Prusiner, S.B., Shattuck lecture - neurodegenerative diseases and prions (2001) N Engl J Med, 344, pp. 1516-1526 | |
dc.description | Beissinger, M., Buchner, J., How chaperones fold proteins (1998) Biol Chem, 379, pp. 245-259 | |
dc.description | Hartl, F.U., Hayer-Hartl, M., Molecular chaperones in the cytosol, from nascent chain to folded protein (2002) Science, 295, pp. 1852-1858 | |
dc.description | Borges, J.C., Ramos, C.H.I., Protein folding assisted by chaperones (2008) Protein Pept Lett, 12, pp. 256-261 | |
dc.description | Borges, J.C., Peroto, M.C., Ramos, C.H.I., Molecular Chaperone Genes in the SugarCane Expressed Sequence Database (SUCEST) (2001) Gen Mol Biol, 24, pp. 85-92 | |
dc.description | Borges, J.C., Cagliari, T.C., Ramos, C.H.I., Expression and variability of molecular chaperones in the sugarcane expressome (2007) J Plant Physiol, 164, pp. 505-513 | |
dc.description | Cagliari, T.C., Tiroli, A.O., Borges, J.C., Ramos, C.H.I., Identification and in silico expression analysis of eucalyptus expressed sequencing tags (ESTs) encoding molecular chaperones (2005) Gen Mol Biol, 28, pp. 520-528 | |
dc.description | Csermely, P., Chaperone overload is a possible contributor to 'civilization diseases' (2001) Trends Genet, 17, pp. 701-704 | |
dc.description | Chaduri, T.K., Paul, S., Protein-misfolding diseases and chaperone-base therapeutic approaches (2006) FEBS J, 273, pp. 1331-1349 | |
dc.description | Sõti, C., Nagy, E., Giricz, Z., Vígh, L., Csermely, P., Ferdinandy, P., Heat shock proteins as emerging therapeutic targets (2005) Br J Pharmacol, 146, pp. 769-780 | |
dc.description | Macario, A.J.L., de Macario, E.C., Chaperonophaties and chaperonotherapy (2007) FEBS Lett, 581, pp. 3681-3688 | |
dc.description | Powers, M.V., Workman, P., Inhibitors of the heat shock response: Biology and pharmacology (2007) FEBS Lett, 581, pp. 3758-3769 | |
dc.description | Turbyville, T.J., Wijeratne, E.M., Whitesell, L., Gunatilaka, A.A., The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways (2005) Mol Cancer Ther, 4, pp. 1569-1576 | |
dc.description | Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., Celastrols as inducers of the heat shock response and cytoprotection (2004) J Biol Chem, 279, pp. 56053-56060 | |
dc.description | Nagai, N., Nakai, A., Nagata, K., Quercetin suppresses heat shock response by down regulation of HSF1 (1995) Biochem Biophys Res Commun, 208, pp. 1099-1105 | |
dc.description | Dechsupa, S., Kothan, S., Vergote, J., Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-MB-435 cells xenograft in vivo (2007) Cancer Biol Ther, 6, pp. 56-61 | |
dc.description | Prodromou, C., Pearl, L.H., Structure and functional relationships of Hsp90 (2003) Curr Cancer Drug Targets, 3, pp. 301-323 | |
dc.description | Prodomou, C., Roe, S.M., O'brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone (1997) Cell, 90, pp. 65-75 | |
dc.description | Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., Pavletich, N.P., Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent (1997) Cell, 89, pp. 239-250 | |
dc.description | Marcu, M.G., Chadli, A., Bouhouche, I., Catelli, M., Neckers, L.M., The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone (2000) J Biol Chem, 275, pp. 37181-37186 | |
dc.description | Garnier, C., Lafitte, D., Tsvetkov, P.O., Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain (2002) J Biol Chem, 277, pp. 12208-12214 | |
dc.description | Soti, C., Racz, A., Csermely, P., A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket (2002) J Biol Chem, 277, pp. 7066-7075 | |
dc.description | Obermann, W.M., Sondermann, H., Russo, A.A., Pavletich, N.P., Hartl, F.U., In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis (1998) J Cell Biol, 143, pp. 901-910 | |
dc.description | Jez, J.M., Chen, J.C., Rastelli, G., Stroud, R.M., Santi, D.V., Crystal Structure and Molecular Modeling of 17-DMAG in Complex with Human Hsp90 (2003) Chem Biol, 10, pp. 361-368 | |
dc.description | Boston, R.S., Viitanen, P.V., Vierling, E., Molecular chaperones and protein folding in plants (1996) Plant Mol Biol, 32, pp. 191-222 | |
dc.description | Sreedhar, A.S., Kalmár, E., Csermely, P., Shen, Y.F., Hsp90 isoforms: Functions, expression and clinical importance (2004) FEBS Lett, 562, pp. 11-15 | |
dc.description | Eustace, B.K., Sakurai, T., Stewart, J.K., Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness (2004) Nat Cell Biol, 6, pp. 507-514 | |
dc.description | Wegele, H., Müller, L., Buchner, J., Hsp70 and Hsp90 - a relay team for protein folding (2004) Rev Physiol Biochem Pharmacol, 151, pp. 1-44 | |
dc.description | Wandinger, S.K., Richter, K., Buchner, J., The Hsp90 chaperone machinery (2008) J Biol Chem, 283, pp. 18473-18477 | |
dc.description | Chiosis, G., Vilenchik, M., Kim, J., Solit, D., Hsp90: The vulnerable chaperone (2004) Drug Discov Today, 9, pp. 881-888 | |
dc.description | Russell, L.C., Whitt, S.R., Chen, M.S., Chinkers, M., Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90 (1999) J Biol Chem, 274, pp. 20060-20063 | |
dc.description | Panaretou, B., Siligardi, G., Meyer, P., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1 (2002) Mol Cell, 10, pp. 1307-1318 | |
dc.description | Kamal, A., Thao, L., Sensintaffar, J., A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors (2003) Nature, 425, pp. 407-410 | |
dc.description | Zhao, R., Davey, M., Hsu, Y.C., Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727 | |
dc.description | Whitesell, L., Lindquist, S.L., HSP90 and the chaperoning of cancer (2005) Nat Rev Cancer, 5, pp. 761-772 | |
dc.description | Pratt, W.B., The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors (1998) Proc Soc Exp Biol Med, 217, pp. 420-434 | |
dc.description | Nardai, G., Végh, E.M., Prohászka, Z., Csermely, P., Chaperone-related immune dysfunction: An emergent property of distorted chaperone networks.Trends (2006) Immunol, 27, pp. 74-79 | |
dc.description | Citri, A., Harari, D., Shohat, G., Hsp90 recognizes a common surface on client kinases (2006) J Biol Chem, 281, pp. 14361-14369 | |
dc.description | Pearl, L.H., Prodromou, C., Workman, P., The Hsp90 molecular chaperone: An open and shut case for treatment (2008) Biochem J, 410, pp. 439-453 | |
dc.description | Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review (1998) Pharmacol Ther, 79, pp. 129-168 | |
dc.description | Buchner J. Hsp90 & Co. a holding for folding. Trends Biochem Sci 1999 | |
dc.description | 24: 136-41Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70 | |
dc.description | Workman, P., Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone (2004) Cancer Lett, 206, pp. 149-157 | |
dc.description | Sharp, S., Workman, P., Inhibitors of the HSP90 molecular chaperone: Current status (2006) Adv Cancer Res, 95, pp. 323-348 | |
dc.description | Neckers, L., Heat shock protein 90: The cancer chaperone (2007) J Biosci, 32, pp. 517-530 | |
dc.description | Fortugno, P., Beltrami, E., Plescia, J., Regulation of survivin function by Hsp90 (2003) Proc Natl Acad Sci, 100, pp. 13791-13796 | |
dc.description | Becker, B., Multhoff, G., Farkas, B., Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases (2004) Exp Dermatol, 13, pp. 27-32 | |
dc.description | Eustace, B.K., Jay, D.G., Extracellular roles for the molecular chaperone, hsp90 (2004) Cell Cycle, 3, pp. 1098-1100 | |
dc.description | Sreedhar, A.S., Csermely, P., Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: a comprehensive review (2004) Pharmacol Ther, 101, pp. 227-257 | |
dc.description | Munster, P.N., Basso, A., Solit, D., Norton, L., Rosen, N., Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner (2001) Clin Cancer Res, 7, pp. 2228-2236 | |
dc.description | Munster, P.N., Marchion, D.C., Basso, A.D., Rosen, N., Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase-AKT-dependent pathway (2002) Cancer Res, 62, pp. 3132-3137 | |
dc.description | Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function (2002) J Biol Chem, 277, pp. 39858-39866 | |
dc.description | Sreedhar, A.S., Mihaly, K., Pato, B., Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events (2003) J Biol Chem, 278, pp. 35231-35240 | |
dc.description | Sreedhar, A.S., Nardai, G., Csermely, P., Enhancement of complement-induced cell lysis: A novel mechanism for the anticancer effects of Hsp90 inhibitors (2004) Immunol Lett, 92, pp. 157-161 | |
dc.description | Csermely, P., Agoston, V., Pongor, S., The efficiency of multi-target drugs: The network approach might help drug design (2005) Trends Pharmacol Sci, 26, pp. 178-182 | |
dc.description | Neckers, L., Neckers, K., Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics - an update (2005) Expert Opin Emerg Drugs, 10, pp. 137-149 | |
dc.description | Janin, Y.L., Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? (2005) J Med Chem, 48, pp. 7503-7512 | |
dc.description | Solit, D.B., Chiosis, G., Development and application of Hsp90 inhibitors (2008) Drug Discov Today, 13, pp. 38-43 | |
dc.description | Wehrli W. Ansamycins. Chemistry, biosynthesis and biological activity.Top Curr Chem 1977 | |
dc.description | 72: 21-49Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone (1997) Cell, 90, pp. 65-75 | |
dc.description | Sasaki, K., Yasuda, H., Onodera, K., Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives (1979) J Antibiot, 32, pp. 849-851 | |
dc.description | Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E., Neckers, L.M., Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation (1994) Proc Natl Acad Sci, 91, pp. 8324-8328 | |
dc.description | Bagatell, R., Paine-Murrieta, G.D., Taylor, C.W., Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents (2000) Clin Cancer Res, 6, pp. 3312-3318 | |
dc.description | Sittler, A., Lurz, R., Lueder, G., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease (2001) Hum Mol Genet, 10, pp. 1307-1315 | |
dc.description | Neckers, L., Ivy, S.P., Heat shock protein 90 (2003) Curr Opin Oncol, 15, pp. 419-424 | |
dc.description | Supko, J.G., Hickman, R.L., Grever, M.R., Malspeis, L., Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent (1995) Cancer Chemother Pharmacol, 36, pp. 305-315 | |
dc.description | Egorin, M.J., Zuhowski, E.G., Rosen, D.M., Sentz, D.L., Covey, J.M., Eiseman, J.L., Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1 (2001) Cancer Chemother Pharmacol, 47, pp. 291-302 | |
dc.description | Patel, K., Piagentini, M., Rascher, A., Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition (2004) Chem Biol, 11, pp. 1625-1633 | |
dc.description | Xie, Q., Gao, C.F., Shinomiya, N., Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion (2005) Oncogene, 24, pp. 3697-3707 | |
dc.description | Schulte, T.W., Neckers, L.M., The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin (1998) Cancer Chemother Pharmacol, 42, pp. 273-279 | |
dc.description | Chiosis, G., Huezo, H., Rosen, N., Mimnaugh, E., Whitesell, L., Neckers, L., 17AAG: Low target binding affinity and potent cell activity - finding an explanation (2003) Mol Cancer Ther, 2, pp. 123-129 | |
dc.description | Workman, P., Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: Unfolding the relationship between pharmacokinetics and pharmacodynamics (2003) Mol Cancer Ther, 2, pp. 131-138 | |
dc.description | Banerji, U., O'donnell, A., Scurr, M., Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies (2005) J Clin Oncol, 23, pp. 4152-4161 | |
dc.description | Sausville, E.A., Tomaszewski, J.E., Ivy, P., Clinical development of 17-allylamino, 17-demethoxygeldanamycin (2003) Curr Cancer Drug Targets, 3, pp. 377-383 | |
dc.description | Modi, S., Stopeck, A.T., Gordon, M.S., Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: A phase I dose-escalation study (2007) J Clin Oncol, 25, pp. 5410-5417 | |
dc.description | Powers, M.V., Workman, P., Inhibitors of the heat shock response: Biology and pharmacology (2007) FEBS Lett, 581, pp. 3758-3769 | |
dc.description | Banerji, U., Affolter, A., Judson, I., Marais, R., Workman, P., BRAF and NRAS mutations in melanoma: Potential relationships to clinical response to HSP90 inhibitors (2008) Mol Cancer Ther, 7, pp. 737-739 | |
dc.description | De Candia, P., Solit, D.B., Giri, D., Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors (2003) Proc Natl Acad Sci, 100, pp. 12337-12342 | |
dc.description | Bisht, K.S., Bradbury, C.M., Mattson, D., Geldanamycin and 17- allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signalling and cytotoxicity (2003) Cancer Res, 63, pp. 8984-8995 | |
dc.description | Smith, V., Sausville, E.A., Camalier, R.F., Fiebig, H.H., Burger, A.M., Comparison of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: Effects on Hsp90 and client proteins in melanoma models (2005) Cancer Chemother Pharmacol, 56 (2), pp. 126-137 | |
dc.description | Egorin, M.J., Lagattuta, T.F., Hamburger, D.R., Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino) -17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats (2002) Cancer Chemother Pharmacol, 49 (1), pp. 7-19 | |
dc.description | Phillips, J.J., Yao, Z.P., Zhang, W., Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs (2007) J Mol Biol, 372 (5), pp. 1189-1203 | |
dc.description | Delmotte, P., Delmotte-Plaque, J., A new antifungal substance of fungal origin (1953) Nature, 171, p. 344 | |
dc.description | Kwon, H.J., Yoshida, M., Abe, K., Horinouchi, S., Beppu, T., Radicicol, an agent inducing the reversal of transformed phenotypes of src-transformed fibroblasts (1992) Biosci Biotechnol Biochem, 56 (3), pp. 538-539 | |
dc.description | Soga, S., Neckers, L.M., Schulte, T.W., KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules (1999) Cancer Res, 59 (12), pp. 2931-2938 | |
dc.description | Agatsuma, T., Ogawa, H., Akasaka, K., Halohydrin and oxime derivatives of radicicol: Synthesis and antitumor activities (2002) Bioorg Med Chem, 10 (11), pp. 3445-3454 | |
dc.description | Soga, S., Shiotsu, Y., Akinaga, S., Sharma, S.V., Development of radicicol analogues (2003) Curr Cancer Drug Targets, 3 (5), pp. 359-369 | |
dc.description | Marcu, M.G., Schulte, T.W., Neckers, L., Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins (2000) J Natl Cancer Inst, 92 (3), pp. 242-248 | |
dc.description | Yu, X.M., Shen, G., Neckers, L., Hsp90 inhibitors identified from a library of novobiocin analogues (2005) J Am Chem Soc, 127 (37), pp. 12778-12779 | |
dc.description | Llauger, L., He, H., Kim, J., Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90 (2005) J Med Chem, 48 (8), pp. 2892-2905 | |
dc.description | He, H., Zatorska, D., Kim, J., Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90 (2006) J Med Chem, 49 (1), pp. 381-390 | |
dc.description | Sharp, S.Y., Prodromou, C., Boxall, K., Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues (2007) Mol Cancer Ther, 6 (4), pp. 1198-1211 | |
dc.description | Eccles, S.A., Massey, A., Raynaud, F.I., NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis (2008) Cancer Res, 68 (8), pp. 2850-2860 | |
dc.description | Martin, C.J., Gaisser, S., Challis, I.R., Molecular characterization of macbecin as an hsp90 inhibitor (2008) J Med Chem, 51 (9), pp. 2853-2857 | |
dc.description | Modi, S., Stopeck, A.T., Gordon, M.S., Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: A phase I dose-escalation study (2007) J Clin Oncol, 25 (34), pp. 5410-5417 | |
dc.description | Sydor, J.R., Normant, E., Pien, C.S., Development of 17- allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90 (2006) Proc Natl Acad Sci, 103 (46), pp. 17408-17413 | |
dc.description | Onodera, H., Kaneko, M., Takahashi, Y., Conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin, for Hsp90 inhibitory activity (2008) Bioorg Med Chem Lett, 18 (5), pp. 1577-1580 | |
dc.description | Banerji, U., Sain, N., Sharp, S.Y., An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino- 17-demethoxygeldanamycin and carboplatin in human ovarian cancer models (2008) Cancer Chemother Pharmacol, 62 (5), pp. 769-778 | |
dc.description | Chandarlapaty, S., Sawai, A., Ye, Q., SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers (2008) Clin Cancer Res, 14 (1), pp. 240-248 | |
dc.description | Yu, X., Guo, Z.S., Marcu, M.G., Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228 (2002) J Natl Cancer Inst, 94 (7), pp. 504-513 | |
dc.description | Aoyagi, S., Trevor, K., Archer Modulating molecular chaperone Hsp90 functions through reversible acetylation (2005) Trends in Cell Biology, 15 (11), pp. 565-567 | |
dc.description | Martínez-Ruiz, A., Villanueva, L., González de Orduña, C., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities (2005) Proc Natl Acad Sci, 102 (24), pp. 8525-8530 | |
dc.description | Legagneux, V., Morange, M., Bensaude, O., Heat shock increases turnover of 90 kDa heat shock protein phosphate groups in HeLa cells (1991) FEBS Lett, 291 (2), pp. 359-362 | |
dc.description | Zhao, Y.G., Gilmore, R., Leone, G., Coffey, M.C., Weber, B., Lee, P.W., Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein (2001) J Biol Chem, 276 (35), pp. 32822-32827 | |
dc.description | Kurokawa, M., Zhao, C., Reya, T., Kornbluth, S., Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias (2008) Mol Cell Biol, 28 (17), pp. 5494-5506 | |
dc.description | Beere, H., Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways (2005) J Clin Invest, 115, pp. 2633-2639 | |
dc.description | Gorre, M.E., Ellwood-Yen, K., Chiosis, G., Rosen, N., Sawyers, C.L., BCRABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90 (2002) Blood, 100, pp. 3041-3044 | |
dc.description | Srivastava, P.K., Maki, R.G., Stress-induced proteins in immune response to cancer.Curr Top (1991) Microbiol Immunol, 167, pp. 109-123 | |
dc.description | Ishii, T., Udono, H., Yamano, T., Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96 (1999) J Immunol, 162 (3), pp. 1303-1309 | |
dc.description | Callahan, M.K., Garg, M., Srivastava, P.K., (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation.Proc Natl Acad Sci, 105 (5), pp. 1662-1667 | |
dc.description | Brodsky, J.L., Chiosis, G., Hsp70 molecular chaperones: Emerging roles in human disease and identification of small molecule modulators (2006) Curr Top Med Chem, 6, pp. 1215-1225 | |
dc.description | Johnson, J.L., Beito, T.G., Krco, C.J., Toft, D.O., Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes (1994) Mol Cell Biol, 14, pp. 1956-1963 | |
dc.description | Kimura, Y., Rutherford, S.L., Miyata, Y., Cdc37 is a molecular chaperone with specific functions in signal transduction (1997) Genes Dev, 14, pp. 1775-1785 | |
dc.description | Mayer, M.P., Nikolay, R., Bukau, B., Aha, another regulator for hsp90 chaperones (2002) Mol Cell, 6, pp. 1255-1256 | |
dc.description | Perdew GH, Whitelaw ML. Evidence that the 90-kDa heat shock protein (HSP90) exists in cytosol in heteromeric complexes containing HSP70 and three other proteins with Mr of 63,000,56,000, and 50,000. J Biol Chem 1991 | |
dc.description | 266: 6708-13Johnson, B.D., Schumacher, R.J., Ross, E.D., Toft, D.O., Hop modulates Hsp70/Hsp90 interactions in protein folding (1998) J Biol Chem, 6, pp. 3679-3686 | |
dc.description | Young, J.C., Hoogenraad, N.J., Hartl, F.U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70 (2003) Cell, 1, pp. 41-50 | |
dc.description | Catlett, M.G., Kaplan, K.B., Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p (2006) J Biol Chem, 44, pp. 33739-33748 | |
dc.description | Liu L, Srikakulam R, Winkelmann DA. Unc45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chemjavascript:AL_get(this, 'jour', 'J Biol Chem.') | |
dc.description | 2008 | |
dc.description | 19: 13185-93Pirkl, F., Buchner, J., Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40 (2001) J Mol Biol, 4, pp. 795-806 | |
dc.description | Warth, R., Briand, P.A., Picard, D., Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation (1997) Biol Chem, 5, pp. 381-391 | |
dc.description | Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin (1997) J Biol Chem, 26, pp. 16224-16230 | |
dc.description | Connell, P., Ballinger, C.A., Jiang, J., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins (2001) Nat Cell Biol, 3, pp. 93-96 | |
dc.description | Rosser, M.F., Washburn, E., Muchowski, P.J., Patterson, C., Cyr, D.M., Chaperone functions of the E3 ubiquitin ligase CHIP (2007) J Biol Chem, 31, pp. 22267-22277 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Current Chemical Biology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Human 90 Kda Heat Shock Protein Hsp90 As A Target For Cancer Therapeutics | |
dc.type | Artículos de revistas | |