Artículos de revistas
Bayesian Estimation And Case Influence Diagnostics For The Zero-inflated Negative Binomial Regression Model
Registro en:
Journal Of Applied Statistics. Taylor And Francis Ltd., v. 42, n. 6, p. 1148 - 1165, 2015.
2664763
10.1080/02664763.2014.995610
2-s2.0-84924917320
Autor
Garay A.M.
Lachos V.H.
Bolfarine H.
Institución
Resumen
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart. 42 6 1148 1165 Agarwal, D., Gelfand, A., Citron-Pousty, S., Zero-inflated models with application to spatial count data (2002) Environ. Ecol. Stat., 9, pp. 341-355 Bohning, D., Dietz, E., Schlattmann, P., Mendonca, L., Kirchner, U., The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology (1999) J. R. Stat. Soc. Ser. A Stat. Soc., 162, pp. 195-209 Brooks, S., Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde (2002) J. R. Stat. Soc. Ser. B Stat. Methodol., 64, pp. 616-618 Cancho, V.G., Ortega, E.M., Paula, G.A., On estimation and influence diagnostics for log-Birnbaum-Saunders Student-t regression models: Full Bayesian analysis (2010) J. Statist. Plann. Inference, 140, pp. 2486-2496 Carlin, B., Louis, T., (2001) Bayes and Empirical Bayes Methods for Data Analysis, , 2nd ed., Chapman & Hall/CRC, Boca Raton: Chen, M., Shao, Q., Ibrahim, J., (2000) Monte Carlo Methods in Bayesian Computation, , Springer-Verlag, New York, NY: Cho, H., Ibrahim, J.G., Sinha, D., Zhu, H., Bayesian case influence diagnostics for survival models (2009) Biometrics, 65, pp. 116-124 Cook, R., Assessment of local influence (1986) J. R. Stat. Soc. Ser. B Methodol., 48, pp. 133-169 Cook, R., Weisberg, S., (1982) Residuals and influence in regression, , Chapman and Hall, New York: Csiszar, I., Information-type measures of difference of probability distributions and indirect observations (1967) Studia Sci. Math. Hungar., 2, pp. 299-318 Doornik, J., (2007) Object-Oriented Matrix Programming using Ox 3.0, , http://www.nuff.ox.ac.uk/Users/Doornik, 4th ed., Timberlake Consultants Ltd, London:accessed April Garay, A.M., Hashimoto, E.M., Ortega, E.M., Lachos, V.H., On estimation and influence diagnostics for zero-inflated negative binomial regression models (2011) Computat. Statist. Data Anal., 55, pp. 1304-1318 Gelfand, A., Dey, D., Chang, H., Model determination using predictive distributions with implementation via sampling-based methods (1992) Bayesian Stat., 4, pp. 147-167 Gelman, A., Carlin, J., Rubin, D., (2006) Bayesian Data Analysis, , Chapman & Hall/CRC, New York, NY: Hall, D.B., Zero-inflated Poisson and binomial regression with random effects: A case study (2000) Biometrics, 56, pp. 1030-1039 Lambert, D., Zero-inflated Poisson regression, with an application to defects in manufacturing (1992) Technometrics, 34, pp. 1-14 Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D., Winbugs-a Bayesian modelling framework: Concepts, structure, and extensibility (2000) Stat. Comput., 10, pp. 325-337 Martinez-Flores, G., Bolfarine, H., Gomez, H., Asymmetric regression models with limited responses with an application to antibody response to vaccine (2013) Biom. J., 55, pp. 156-172 Moulton, L.H., Halsey, N.A., A mixture model with detection limits for regression analyses of antibody response to vaccine (1995) Biometrics, 51, pp. 1570-1578 Mwalili, S., Lesaffre, E., Declerck, D., The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research (2008) Stat. Methods Med. Res., 17, pp. 123-139 Neelon, B.H., O'Malley, A.J., Normand, S.-L.T., A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use (2010) Stat. Model., 10, pp. 421-439 Paulino, C., Amaral, M., Murteira, B., (2003) Estatística Bayesiana (in portuguese), , Fundaç ao Calouste Gulbenkian, Lisboa: Peng, F., Dey, D.K., Bayesian analysis of outlier problems using divergence measures (1995) Canad. J. Statist., 23, pp. 199-213 Core Team, R., (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, , Vienna, Austria: Ridout, M., Hinde, J., Demétrio, C.G.B., A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives (2001) Biometrics, 57, pp. 219-223 Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A., Bayesian measures of model complexity and fit (2002) J. R. Stat. Soc. Ser. B Methodol., 64, pp. 583-639 Vidal, I., Castro, L.M., Influential observations in the independent Student-t measurement error model with weak nondifferential error (2010) Chilean J. Statist., 1, pp. 17-34 Weiss, R., An approach to Bayesian sensitivity analysis (1996) J. R. Stat. Soc. Ser. B Methodol., 58, pp. 739-750 Weiss, R., Cook, R., A grafical case statistic for assessing posterior influence (1992) Biometrika, 79, pp. 51-55 Xie, F.-C., Lin, J.-G., Wei, B.-C., Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics (2014) J. Appl. Stat., 41, pp. 1383-1392 Zhou, X.-H., Tu, W., Confidence intervals for the mean of diagnostic test charge data containing zeros (2000) Biometrics, 56, pp. 1118-1125 Zhu, F., Zero-inflated Poisson and negative binomial integer-valued GARCH models (2012) J. Statist. Plann. Inference, 142, pp. 826-839