dc.creatorGaray A.M.
dc.creatorLachos V.H.
dc.creatorBolfarine H.
dc.date2015
dc.date2015-06-25T12:51:04Z
dc.date2015-11-26T15:27:44Z
dc.date2015-06-25T12:51:04Z
dc.date2015-11-26T15:27:44Z
dc.date.accessioned2018-03-28T22:36:24Z
dc.date.available2018-03-28T22:36:24Z
dc.identifier
dc.identifierJournal Of Applied Statistics. Taylor And Francis Ltd., v. 42, n. 6, p. 1148 - 1165, 2015.
dc.identifier2664763
dc.identifier10.1080/02664763.2014.995610
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924917320&partnerID=40&md5=b900327fe15315b294e7c06959d96595
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85205
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85205
dc.identifier2-s2.0-84924917320
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261417
dc.descriptionIn recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.
dc.description42
dc.description6
dc.description1148
dc.description1165
dc.descriptionAgarwal, D., Gelfand, A., Citron-Pousty, S., Zero-inflated models with application to spatial count data (2002) Environ. Ecol. Stat., 9, pp. 341-355
dc.descriptionBohning, D., Dietz, E., Schlattmann, P., Mendonca, L., Kirchner, U., The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology (1999) J. R. Stat. Soc. Ser. A Stat. Soc., 162, pp. 195-209
dc.descriptionBrooks, S., Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde (2002) J. R. Stat. Soc. Ser. B Stat. Methodol., 64, pp. 616-618
dc.descriptionCancho, V.G., Ortega, E.M., Paula, G.A., On estimation and influence diagnostics for log-Birnbaum-Saunders Student-t regression models: Full Bayesian analysis (2010) J. Statist. Plann. Inference, 140, pp. 2486-2496
dc.descriptionCarlin, B., Louis, T., (2001) Bayes and Empirical Bayes Methods for Data Analysis, , 2nd ed., Chapman & Hall/CRC, Boca Raton:
dc.descriptionChen, M., Shao, Q., Ibrahim, J., (2000) Monte Carlo Methods in Bayesian Computation, , Springer-Verlag, New York, NY:
dc.descriptionCho, H., Ibrahim, J.G., Sinha, D., Zhu, H., Bayesian case influence diagnostics for survival models (2009) Biometrics, 65, pp. 116-124
dc.descriptionCook, R., Assessment of local influence (1986) J. R. Stat. Soc. Ser. B Methodol., 48, pp. 133-169
dc.descriptionCook, R., Weisberg, S., (1982) Residuals and influence in regression, , Chapman and Hall, New York:
dc.descriptionCsiszar, I., Information-type measures of difference of probability distributions and indirect observations (1967) Studia Sci. Math. Hungar., 2, pp. 299-318
dc.descriptionDoornik, J., (2007) Object-Oriented Matrix Programming using Ox 3.0, , http://www.nuff.ox.ac.uk/Users/Doornik, 4th ed., Timberlake Consultants Ltd, London:accessed April
dc.descriptionGaray, A.M., Hashimoto, E.M., Ortega, E.M., Lachos, V.H., On estimation and influence diagnostics for zero-inflated negative binomial regression models (2011) Computat. Statist. Data Anal., 55, pp. 1304-1318
dc.descriptionGelfand, A., Dey, D., Chang, H., Model determination using predictive distributions with implementation via sampling-based methods (1992) Bayesian Stat., 4, pp. 147-167
dc.descriptionGelman, A., Carlin, J., Rubin, D., (2006) Bayesian Data Analysis, , Chapman & Hall/CRC, New York, NY:
dc.descriptionHall, D.B., Zero-inflated Poisson and binomial regression with random effects: A case study (2000) Biometrics, 56, pp. 1030-1039
dc.descriptionLambert, D., Zero-inflated Poisson regression, with an application to defects in manufacturing (1992) Technometrics, 34, pp. 1-14
dc.descriptionLunn, D.J., Thomas, A., Best, N., Spiegelhalter, D., Winbugs-a Bayesian modelling framework: Concepts, structure, and extensibility (2000) Stat. Comput., 10, pp. 325-337
dc.descriptionMartinez-Flores, G., Bolfarine, H., Gomez, H., Asymmetric regression models with limited responses with an application to antibody response to vaccine (2013) Biom. J., 55, pp. 156-172
dc.descriptionMoulton, L.H., Halsey, N.A., A mixture model with detection limits for regression analyses of antibody response to vaccine (1995) Biometrics, 51, pp. 1570-1578
dc.descriptionMwalili, S., Lesaffre, E., Declerck, D., The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research (2008) Stat. Methods Med. Res., 17, pp. 123-139
dc.descriptionNeelon, B.H., O'Malley, A.J., Normand, S.-L.T., A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use (2010) Stat. Model., 10, pp. 421-439
dc.descriptionPaulino, C., Amaral, M., Murteira, B., (2003) Estatística Bayesiana (in portuguese), , Fundaç ao Calouste Gulbenkian, Lisboa:
dc.descriptionPeng, F., Dey, D.K., Bayesian analysis of outlier problems using divergence measures (1995) Canad. J. Statist., 23, pp. 199-213
dc.descriptionCore Team, R., (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, , Vienna, Austria:
dc.descriptionRidout, M., Hinde, J., Demétrio, C.G.B., A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives (2001) Biometrics, 57, pp. 219-223
dc.descriptionSpiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A., Bayesian measures of model complexity and fit (2002) J. R. Stat. Soc. Ser. B Methodol., 64, pp. 583-639
dc.descriptionVidal, I., Castro, L.M., Influential observations in the independent Student-t measurement error model with weak nondifferential error (2010) Chilean J. Statist., 1, pp. 17-34
dc.descriptionWeiss, R., An approach to Bayesian sensitivity analysis (1996) J. R. Stat. Soc. Ser. B Methodol., 58, pp. 739-750
dc.descriptionWeiss, R., Cook, R., A grafical case statistic for assessing posterior influence (1992) Biometrika, 79, pp. 51-55
dc.descriptionXie, F.-C., Lin, J.-G., Wei, B.-C., Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics (2014) J. Appl. Stat., 41, pp. 1383-1392
dc.descriptionZhou, X.-H., Tu, W., Confidence intervals for the mean of diagnostic test charge data containing zeros (2000) Biometrics, 56, pp. 1118-1125
dc.descriptionZhu, F., Zero-inflated Poisson and negative binomial integer-valued GARCH models (2012) J. Statist. Plann. Inference, 142, pp. 826-839
dc.languageen
dc.publisherTaylor and Francis Ltd.
dc.relationJournal of Applied Statistics
dc.rightsfechado
dc.sourceScopus
dc.titleBayesian Estimation And Case Influence Diagnostics For The Zero-inflated Negative Binomial Regression Model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución