Actas de congresos
Fisher Information And Kinetic Energy Functionals: A Dequantization Approach
Registro en:
Journal Of Computational And Applied Mathematics. , v. 233, n. 6, p. 1542 - 1547, 2010.
3770427
10.1016/j.cam.2009.02.087
2-s2.0-77249118629
Autor
Hamilton I.P.
Mosna R.A.
Institución
Resumen
We strengthen the connection between information theory and quantum-mechanical systems using a recently developed dequantization procedure whereby quantum fluctuations latent in the quantum momentum are suppressed. The dequantization procedure results in a decomposition of the quantum kinetic energy as the sum of a classical term and a purely quantum term. The purely quantum term, which results from the quantum fluctuations, is essentially identical to the Fisher information. The classical term is complementary to the Fisher information and, in this sense, it plays a role analogous to that of the Shannon entropy. We demonstrate the kinetic energy decomposition for both stationary and nonstationary states and employ it to shed light on the nature of kinetic energy functionals.© 2009 Elsevier B.V. All rights reserved. 233 6 1542 1547 Dehesa, J.S., Lopez-Rosa, S., Olmos, B., Yanez, R.J., Information measures of hydrogenic systems, Laguerre polynomials and spherical harmonics (2005) Journal of Computational and Applied Mathematics, 179, pp. 185-194. , DOI 10.1016/j.cam.2004.09.040, PII S0377042704004480 Dehesa, J.S., Martinez-Finkelshtein, A., Sorokin, V.N., Information-theoretic measures for Morse and Pöschl-Teller potentials (2006) Molecular Physics, 104 (4), pp. 613-622. , DOI 10.1080/00268970500493243, PII K50556650768 Dehesa, J.S., González-Férez, R., Sánchez-Moreno, P., The Fisher-information-based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-dimensional central problem (2007) J. Phys. A, 40, pp. 1845-1856 Romera, E., Sanchez-Moreno, P., Dehesa, J.S., The Fisher information of single-particle systems with a central potential (2005) Chemical Physics Letters, 414 (4-6), pp. 468-472. , DOI 10.1016/j.cplett.2005.08.032, PII S0009261405011966 Romera, E., Sánchez-Moreno, P., Dehesa, J.S., Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials (2006) J. Math. Phys., 47, p. 103504 Sánchez-Moreno, P., González-Férez, R., Dehesa, J.S., Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials (2006) New J. Phys., 8, p. 330 Mosna, R.A., Hamilton, I.P., Site, L.D., Quantum-classical correspondence via a deformed kinetic operator (2005) Journal of Physics A: Mathematical and General, 38 (17), pp. 3869-3878. , DOI 10.1088/0305-4470/38/17/011 Mosna, R.A., Hamilton, I.P., Site, L.D., Variational approach to dequantization (2006) Journal of Physics A: Mathematical and General, 39 (14), pp. L229-L235. , DOI 10.1088/0305-4470/39/14/L03, PII S0305447006181391 Hamilton, I.P., Mosna, R.A., Site, L.D., Classical kinetic energy quantum fluctuation terms and kinetic-energy functionals (2007) Theor. Chem. Acct., 118, pp. 407-415 Fisher, R.A., Theory of statistical estimation (1925) Proc. Cambridge Philos. Soc., 22, pp. 700-725 A. Nagy, Fisher information in density functional theory (2003) J. Chem. Phys., 119, pp. 9401-9405 Shannon, C.E., A mathematical theory of communication (1948) Bell Syst. Tech. J., 27, pp. 379-423. , 623-656 Romera, E., Dehesa, J.S., The Fisher-Shannon information plane an electron correlation tool (2004) J. Chem. Phys., 120, pp. 8906-8912 Sen, K.D., Antolín, J., Angulo, J.C., Fisher-Shannon analysis of ionization processes and isoelectronic series (2007) Phys. Rev. A, 76, p. 032502 Parr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford University Press, New York Dreizler, R.M., Gross, E.K.U., (1990) Density Functional Theory: An Approach to the Quantum Many Body Problem, , Springer-Verlag, Berlin Koch, W., Holthausen, M.C., (2000) A Chemist's Guide to Density Functional Theory, , Wiley-VCH, Weinheim Weizsäcker, C.F.V., Zur theorie der kernmassen (1935) Z. Phys., 96, pp. 431-458 Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik (1927) Z. Phys., 43, pp. 172-198 Kennard, E.H., Zur Quantenmechanik einfacher Bewegungstypen (1927) Z. Phys., 44, pp. 326-352 Nelson, E., Derivation of the Schrödinger equation from Newtonian mechanics (1966) Phys. Rev., 150, pp. 1079-1085 Nelson, E., (1967) Dynamical Theories of Brownian Motion, , Princeton Univ. Press, Princeton Fényes, I., Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik (1952) Z. Phys., 132, pp. 81-106 Weizel, W., Ableitung der Quantentheorie aus einem klassischen kausal determinierten Modell Z. Phys., 134 (1953), pp. 264-285 Ableitung der Quantentheorie aus einem klassischen Modell. II (1953) Z. Phys., 135, pp. 270-273 Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell (1954) Z. Phys., 136, pp. 582-604 Goldstein, H., (1980) Classical Mechanics, , 2nd ed., Addison-Wesley, Reading, MA Holland, P.R., (1993) The Quantum Theory of Motion, , Cambridge University Press, Cambridge Thomas, L.H., The calculation of atomic fields (1927) Proc. Cambridge Philos. Soc., 23, pp. 542-548 Fermi, E., Un metodo statistico per la determinazione di alcune proprietà dell'atomo Rend (1927) Accad. Lincei, 6, pp. 602-607 Yang, W., Gradient correction in Thomas-Fermi theory (1986) Phys. Rev. A, 34, pp. 4575-4585