dc.creatorHamilton I.P.
dc.creatorMosna R.A.
dc.date2010
dc.date2015-06-26T12:36:25Z
dc.date2015-11-26T15:26:16Z
dc.date2015-06-26T12:36:25Z
dc.date2015-11-26T15:26:16Z
dc.date.accessioned2018-03-28T22:35:02Z
dc.date.available2018-03-28T22:35:02Z
dc.identifier
dc.identifierJournal Of Computational And Applied Mathematics. , v. 233, n. 6, p. 1542 - 1547, 2010.
dc.identifier3770427
dc.identifier10.1016/j.cam.2009.02.087
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77249118629&partnerID=40&md5=ad5744d3c984251dadb52375dc6203b1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91067
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91067
dc.identifier2-s2.0-77249118629
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1261096
dc.descriptionWe strengthen the connection between information theory and quantum-mechanical systems using a recently developed dequantization procedure whereby quantum fluctuations latent in the quantum momentum are suppressed. The dequantization procedure results in a decomposition of the quantum kinetic energy as the sum of a classical term and a purely quantum term. The purely quantum term, which results from the quantum fluctuations, is essentially identical to the Fisher information. The classical term is complementary to the Fisher information and, in this sense, it plays a role analogous to that of the Shannon entropy. We demonstrate the kinetic energy decomposition for both stationary and nonstationary states and employ it to shed light on the nature of kinetic energy functionals.© 2009 Elsevier B.V. All rights reserved.
dc.description233
dc.description6
dc.description1542
dc.description1547
dc.descriptionDehesa, J.S., Lopez-Rosa, S., Olmos, B., Yanez, R.J., Information measures of hydrogenic systems, Laguerre polynomials and spherical harmonics (2005) Journal of Computational and Applied Mathematics, 179, pp. 185-194. , DOI 10.1016/j.cam.2004.09.040, PII S0377042704004480
dc.descriptionDehesa, J.S., Martinez-Finkelshtein, A., Sorokin, V.N., Information-theoretic measures for Morse and Pöschl-Teller potentials (2006) Molecular Physics, 104 (4), pp. 613-622. , DOI 10.1080/00268970500493243, PII K50556650768
dc.descriptionDehesa, J.S., González-Férez, R., Sánchez-Moreno, P., The Fisher-information-based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-dimensional central problem (2007) J. Phys. A, 40, pp. 1845-1856
dc.descriptionRomera, E., Sanchez-Moreno, P., Dehesa, J.S., The Fisher information of single-particle systems with a central potential (2005) Chemical Physics Letters, 414 (4-6), pp. 468-472. , DOI 10.1016/j.cplett.2005.08.032, PII S0009261405011966
dc.descriptionRomera, E., Sánchez-Moreno, P., Dehesa, J.S., Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials (2006) J. Math. Phys., 47, p. 103504
dc.descriptionSánchez-Moreno, P., González-Férez, R., Dehesa, J.S., Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials (2006) New J. Phys., 8, p. 330
dc.descriptionMosna, R.A., Hamilton, I.P., Site, L.D., Quantum-classical correspondence via a deformed kinetic operator (2005) Journal of Physics A: Mathematical and General, 38 (17), pp. 3869-3878. , DOI 10.1088/0305-4470/38/17/011
dc.descriptionMosna, R.A., Hamilton, I.P., Site, L.D., Variational approach to dequantization (2006) Journal of Physics A: Mathematical and General, 39 (14), pp. L229-L235. , DOI 10.1088/0305-4470/39/14/L03, PII S0305447006181391
dc.descriptionHamilton, I.P., Mosna, R.A., Site, L.D., Classical kinetic energy quantum fluctuation terms and kinetic-energy functionals (2007) Theor. Chem. Acct., 118, pp. 407-415
dc.descriptionFisher, R.A., Theory of statistical estimation (1925) Proc. Cambridge Philos. Soc., 22, pp. 700-725
dc.descriptionA. Nagy, Fisher information in density functional theory (2003) J. Chem. Phys., 119, pp. 9401-9405
dc.descriptionShannon, C.E., A mathematical theory of communication (1948) Bell Syst. Tech. J., 27, pp. 379-423. , 623-656
dc.descriptionRomera, E., Dehesa, J.S., The Fisher-Shannon information plane an electron correlation tool (2004) J. Chem. Phys., 120, pp. 8906-8912
dc.descriptionSen, K.D., Antolín, J., Angulo, J.C., Fisher-Shannon analysis of ionization processes and isoelectronic series (2007) Phys. Rev. A, 76, p. 032502
dc.descriptionParr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford University Press, New York
dc.descriptionDreizler, R.M., Gross, E.K.U., (1990) Density Functional Theory: An Approach to the Quantum Many Body Problem, , Springer-Verlag, Berlin
dc.descriptionKoch, W., Holthausen, M.C., (2000) A Chemist's Guide to Density Functional Theory, , Wiley-VCH, Weinheim
dc.descriptionWeizsäcker, C.F.V., Zur theorie der kernmassen (1935) Z. Phys., 96, pp. 431-458
dc.descriptionHeisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik (1927) Z. Phys., 43, pp. 172-198
dc.descriptionKennard, E.H., Zur Quantenmechanik einfacher Bewegungstypen (1927) Z. Phys., 44, pp. 326-352
dc.descriptionNelson, E., Derivation of the Schrödinger equation from Newtonian mechanics (1966) Phys. Rev., 150, pp. 1079-1085
dc.descriptionNelson, E., (1967) Dynamical Theories of Brownian Motion, , Princeton Univ. Press, Princeton
dc.descriptionFényes, I., Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik (1952) Z. Phys., 132, pp. 81-106
dc.descriptionWeizel, W., Ableitung der Quantentheorie aus einem klassischen kausal determinierten Modell Z. Phys., 134 (1953), pp. 264-285
dc.descriptionAbleitung der Quantentheorie aus einem klassischen Modell. II (1953) Z. Phys., 135, pp. 270-273
dc.descriptionAbleitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell (1954) Z. Phys., 136, pp. 582-604
dc.descriptionGoldstein, H., (1980) Classical Mechanics, , 2nd ed., Addison-Wesley, Reading, MA
dc.descriptionHolland, P.R., (1993) The Quantum Theory of Motion, , Cambridge University Press, Cambridge
dc.descriptionThomas, L.H., The calculation of atomic fields (1927) Proc. Cambridge Philos. Soc., 23, pp. 542-548
dc.descriptionFermi, E., Un metodo statistico per la determinazione di alcune proprietà dell'atomo Rend (1927) Accad. Lincei, 6, pp. 602-607
dc.descriptionYang, W., Gradient correction in Thomas-Fermi theory (1986) Phys. Rev. A, 34, pp. 4575-4585
dc.languageen
dc.publisher
dc.relationJournal of Computational and Applied Mathematics
dc.rightsfechado
dc.sourceScopus
dc.titleFisher Information And Kinetic Energy Functionals: A Dequantization Approach
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución