Capítulos de libros
Cancer Stem Cells
Registro en:
9781608055883
Physiopathogenesis Of Hematological Cancer. Bentham Science Publishers Ltd, v. , n. , p. 10 - 13, 2012.
10.2174/978160805259211201010010
2-s2.0-84884887070
Autor
Saad S.T.O.
Institución
Resumen
Recent studies have demonstrated that tumor cells have hierarchical organization with cancer stem cells at the apex. Cancer stem cells, also termed cancer initiating cells, have self-renewal capacity and might not be sensitive to cytotoxic drugs. Thus, these cells may be responsible for the high frequency of relapse in many cancers, such as acute leukemias, brain and breast cancer. This chapter will approach the evidences of the presence of leukemia stem cells and the therapeutic perspectives to reach these cells. © 2012 Bentham Science Publishers. All rights reserved.
10 13 Rosen, J.M., Jordan, C.T., The increasing complexity of the cancer stem cell paradigm (2009) Science, 324, pp. 1670-1673 Zhou, B.B., Zhang, H., Damelin, M., Tumour-initiating cells: challenges and opportunities for anticancer drug discovery (2009) Nat Rev Drug Discov, 8, pp. 806-823 Lane, S.W., Scadden, D.T., Gilliland, D.G., The leukemic stem cell niche: current concepts and therapeutic opportunities (2009) Blood, 114, pp. 1150-1157 Bonnet, D., Dick, J.E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell (1997) Nat Med, 3, pp. 730-737 Lapidot, T., Sirard, C., Vormoor, J., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice (1994) Nature, 367, pp. 645-648 Beachy, P.A., Karhadkar, S.S., Berman, D.M., Tissue repair and stem cell renewal in carcinogenesis (2004) Nature, 432, pp. 324-331 Wu, M., Kwon, H.Y., Rattis, F., Imaging hematopoietic precursor division in real time (2007) Cell Stem Cell, 1, pp. 541-554 Holyoake, T., Jiang, X., Eaves, C., Eaves, A., Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia (1999) Blood, 94, pp. 2056-2064 Guan, Y., Gerhard, B., Hogge, D.E., Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML) (2003) Blood, 101, pp. 3142-3149 Yang, Z.J., Ellis, T., Markant, S.L., Medulloblastoma can be initiated by deletion of Patched in lineagerestricted progenitors or stem cells (2008) Cancer Cell, 14, pp. 135-145 Ashkenazi, R., Gentry, S.N., Jackson, T.L., Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny (2008) Neoplasia, 10, pp. 1170-1182 Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression (2002) Nat Rev Cancer, 2, pp. 442-454 Mani, S.A., Guo, W., Liao, M.J., The epithelial-mesenchymal transition generates cells with properties of stem cells (2008) Cell, 133, pp. 704-715 Calvi, L.M., Adams, G.B., Weibrecht, K.W., Osteoblastic cells regulate the haematopoietic stem cell niche (2003) Nature, 425, pp. 841-846 Zhang, J., Niu, C., Ye, L., Identification of the haematopoietic stem cell niche and control of the niche size (2003) Nature, 425, pp. 836-841 Moore, K.A., Lemischka, I.R., Stem cells and their niches (2006) Science, 311, pp. 1880-1885 Li, L., Neaves, W.B., Normal stem cells and cancer stem cells: the niche matters (2006) Cancer Research, 66, pp. 4553-4557 Bissell, M.J., Labarge, M.A., Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? (2005) Cancer Cell, 7, pp. 17-23 Walkley, C.R., Olsen, G.H., Dworkin, S., A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency (2007) Cell, 129, pp. 1097-1010 Hambardzumyan, D., Becher, O.J., Rosenblum, M.K., PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo (2008) Genes & Develop, 22, pp. 436-448 Calabrese, C., Poppleton, H., Kocak, M., A perivascular niche for brain tumor stem cells (2007) Cancer Cell, 11, pp. 69-82 Sipkins, D.A., Wei, X., Wu, J.W., In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment (2005) Nature, 435, pp. 969-973 Bao, S., Wu, Q., Sathornsumetee, S., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor (2006) Cancer Res, 66, pp. 7843-7848 Clarke, M.F., Becker, M.W., Stem cells: the real culprits in cancer? (2006) Sci Am, 295, pp. 52-59 Scadden, D.T., The stem cell niche in health and leukemic disease (2007) Best Pract Res Clin Haematol, 20, pp. 19-27 Mayack, S.R., Wagers, A.J., Osteolineage niche cells initiate hematopoietic stem cell mobilization (2008) Blood, 112, pp. 519-531 Adams, G.B., Chabner, K.T., Alley, I.R., Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor (2006) Nature, 439, pp. 599-503 Kiel, M.J., Morrison, S.J., Uncertainty in the niches that maintain haematopoietic stem cells (2008) Nat Rev Immunol, 8, pp. 290-201 Kiel, M.J., Yilmaz, O.H., Iwashita, T., SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells (2005) Cell, 121, pp. 1109-1121 Kollet, O., Dar, A., Shivtiel, S., Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells (2006) Nat Med, 12, pp. 657-664 Lo Celso, C., Fleming, H.E., Wu, J.W., Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche (2009) Nature, 457, pp. 92-96 Xie, Y., Yin, T., Wiegraebe, W., Detection of functional haematopoietic stem cell niche using real-time imaging (2009) Nature, 457, pp. 97-01