dc.creator | Saad S.T.O. | |
dc.date | 2012 | |
dc.date | 2015-06-25T20:27:29Z | |
dc.date | 2015-11-26T15:24:08Z | |
dc.date | 2015-06-25T20:27:29Z | |
dc.date | 2015-11-26T15:24:08Z | |
dc.date.accessioned | 2018-03-28T22:33:02Z | |
dc.date.available | 2018-03-28T22:33:02Z | |
dc.identifier | 9781608055883 | |
dc.identifier | Physiopathogenesis Of Hematological Cancer. Bentham Science Publishers Ltd, v. , n. , p. 10 - 13, 2012. | |
dc.identifier | | |
dc.identifier | 10.2174/978160805259211201010010 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84884887070&partnerID=40&md5=f8155293093e70ddab1db11f6a0a4f20 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/90748 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/90748 | |
dc.identifier | 2-s2.0-84884887070 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1260617 | |
dc.description | Recent studies have demonstrated that tumor cells have hierarchical organization with cancer stem cells at the apex. Cancer stem cells, also termed cancer initiating cells, have self-renewal capacity and might not be sensitive to cytotoxic drugs. Thus, these cells may be responsible for the high frequency of relapse in many cancers, such as acute leukemias, brain and breast cancer. This chapter will approach the evidences of the presence of leukemia stem cells and the therapeutic perspectives to reach these cells. © 2012 Bentham Science Publishers. All rights reserved. | |
dc.description | | |
dc.description | | |
dc.description | 10 | |
dc.description | 13 | |
dc.description | Rosen, J.M., Jordan, C.T., The increasing complexity of the cancer stem cell paradigm (2009) Science, 324, pp. 1670-1673 | |
dc.description | Zhou, B.B., Zhang, H., Damelin, M., Tumour-initiating cells: challenges and opportunities for anticancer drug discovery (2009) Nat Rev Drug Discov, 8, pp. 806-823 | |
dc.description | Lane, S.W., Scadden, D.T., Gilliland, D.G., The leukemic stem cell niche: current concepts and therapeutic opportunities (2009) Blood, 114, pp. 1150-1157 | |
dc.description | Bonnet, D., Dick, J.E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell (1997) Nat Med, 3, pp. 730-737 | |
dc.description | Lapidot, T., Sirard, C., Vormoor, J., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice (1994) Nature, 367, pp. 645-648 | |
dc.description | Beachy, P.A., Karhadkar, S.S., Berman, D.M., Tissue repair and stem cell renewal in carcinogenesis (2004) Nature, 432, pp. 324-331 | |
dc.description | Wu, M., Kwon, H.Y., Rattis, F., Imaging hematopoietic precursor division in real time (2007) Cell Stem Cell, 1, pp. 541-554 | |
dc.description | Holyoake, T., Jiang, X., Eaves, C., Eaves, A., Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia (1999) Blood, 94, pp. 2056-2064 | |
dc.description | Guan, Y., Gerhard, B., Hogge, D.E., Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML) (2003) Blood, 101, pp. 3142-3149 | |
dc.description | Yang, Z.J., Ellis, T., Markant, S.L., Medulloblastoma can be initiated by deletion of Patched in lineagerestricted progenitors or stem cells (2008) Cancer Cell, 14, pp. 135-145 | |
dc.description | Ashkenazi, R., Gentry, S.N., Jackson, T.L., Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny (2008) Neoplasia, 10, pp. 1170-1182 | |
dc.description | Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression (2002) Nat Rev Cancer, 2, pp. 442-454 | |
dc.description | Mani, S.A., Guo, W., Liao, M.J., The epithelial-mesenchymal transition generates cells with properties of stem cells (2008) Cell, 133, pp. 704-715 | |
dc.description | Calvi, L.M., Adams, G.B., Weibrecht, K.W., Osteoblastic cells regulate the haematopoietic stem cell niche (2003) Nature, 425, pp. 841-846 | |
dc.description | Zhang, J., Niu, C., Ye, L., Identification of the haematopoietic stem cell niche and control of the niche size (2003) Nature, 425, pp. 836-841 | |
dc.description | Moore, K.A., Lemischka, I.R., Stem cells and their niches (2006) Science, 311, pp. 1880-1885 | |
dc.description | Li, L., Neaves, W.B., Normal stem cells and cancer stem cells: the niche matters (2006) Cancer Research, 66, pp. 4553-4557 | |
dc.description | Bissell, M.J., Labarge, M.A., Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? (2005) Cancer Cell, 7, pp. 17-23 | |
dc.description | Walkley, C.R., Olsen, G.H., Dworkin, S., A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency (2007) Cell, 129, pp. 1097-1010 | |
dc.description | Hambardzumyan, D., Becher, O.J., Rosenblum, M.K., PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo (2008) Genes & Develop, 22, pp. 436-448 | |
dc.description | Calabrese, C., Poppleton, H., Kocak, M., A perivascular niche for brain tumor stem cells (2007) Cancer Cell, 11, pp. 69-82 | |
dc.description | Sipkins, D.A., Wei, X., Wu, J.W., In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment (2005) Nature, 435, pp. 969-973 | |
dc.description | Bao, S., Wu, Q., Sathornsumetee, S., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor (2006) Cancer Res, 66, pp. 7843-7848 | |
dc.description | Clarke, M.F., Becker, M.W., Stem cells: the real culprits in cancer? (2006) Sci Am, 295, pp. 52-59 | |
dc.description | Scadden, D.T., The stem cell niche in health and leukemic disease (2007) Best Pract Res Clin Haematol, 20, pp. 19-27 | |
dc.description | Mayack, S.R., Wagers, A.J., Osteolineage niche cells initiate hematopoietic stem cell mobilization (2008) Blood, 112, pp. 519-531 | |
dc.description | Adams, G.B., Chabner, K.T., Alley, I.R., Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor (2006) Nature, 439, pp. 599-503 | |
dc.description | Kiel, M.J., Morrison, S.J., Uncertainty in the niches that maintain haematopoietic stem cells (2008) Nat Rev Immunol, 8, pp. 290-201 | |
dc.description | Kiel, M.J., Yilmaz, O.H., Iwashita, T., SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells (2005) Cell, 121, pp. 1109-1121 | |
dc.description | Kollet, O., Dar, A., Shivtiel, S., Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells (2006) Nat Med, 12, pp. 657-664 | |
dc.description | Lo Celso, C., Fleming, H.E., Wu, J.W., Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche (2009) Nature, 457, pp. 92-96 | |
dc.description | Xie, Y., Yin, T., Wiegraebe, W., Detection of functional haematopoietic stem cell niche using real-time imaging (2009) Nature, 457, pp. 97-01 | |
dc.language | en | |
dc.publisher | Bentham Science Publishers Ltd | |
dc.relation | Physiopathogenesis of Hematological Cancer | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Cancer Stem Cells | |
dc.type | Capítulos de libros | |