Artículos de revistas
Ultrahigh-sensitivity Temperature Fiber Sensor Based On Multimode Interference
Registro en:
Applied Optics. Optical Society Of American (osa), v. 51, n. 16, p. 3236 - 3242, 2012.
1559128X
10.1364/AO.51.003236
2-s2.0-84861833107
Autor
Silva S.
Pachon E.G.P.
Franco M.A.R.
Hayashi J.G.
Malcata F.X.
Frazao O.
Jorge P.
Cordeiro C.M.B.
Institución
Resumen
The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 7mu;m) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of-1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation. © 2012 Optical Society of America. 51 16 3236 3242 Kumar, A., Varshney, R.K., Antony, C.S., Sharma, P., Transmission characteristics of SMS fiber optic sensor structures (2003) Opt. Commun., 219, pp. 215-219 Wang, Q., Farrell, G., Multimode-fiber-based edge filter for optical wavelength measurement application (2006) Microw. Opt. Technol. Lett., 48, pp. 900-902 Wang, P., Brambilla, G., Ding, M., Semenova, Y., Wu, Q., Farrell, G., High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference (2011) Opt. Lett., 36, pp. 2233-2235 Hatta, A.M., Semenova, Y., Wu, Q., Farrell, G., Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme (2010) Appl. Opt., 49, pp. 536-541 Silva, S., Frazäo, O., Viegas, J., Ferreira, L.A., Araújo, F.M., Malcata, F.X., Santos, J.L., Temperature and strainindependent curvature sensor based on a singlemode/ multimode fiber optic structure (2011) Meas. Sci. Technol., 22, p. 085201 Soldano, L.B., Pennings, E.C.M., Optical multi-mode interference devices based on self-imaging: Principles and applications (1995) J. Lightwave Technol., 13, pp. 615-627 Mohammed, W.S., Smith, P.W.E., Gu, X., All-fiber multimode interference bandpass filter (2006) Opt. Lett., 31, pp. 2547-2549 Antonio-Lopez, J.E., Castillo-Guzman, A., May-Arrioja, D.A., Selvas-Aguilar, R., Wa, P.L., Tunable multimode-interference bandpass fiber filter (2010) Opt. Lett., 35, pp. 324-326 Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., Wa, P.L., May-Arrioja, D.A., Fiber-optic sensor for liquid level measurement (2011) Opt. Lett., 36, pp. 3425-3427 Wu, Q., Semenova, Y., Wang, P., Hatta, A.M., Farrell, G., Experimental demonstration of a simple displacement sensor based on a bent single-mode-multimode-single-mode fiber structure (2011) Meas. Sci. Technol., 22, p. 025203 Wu, Q., Semenova, Y., Wang, P., Farrell, G., High sensitivity SMS fiber structure based refractometer-analysis and experiment (2011) Opt. Express, 19, pp. 7937-7944 Aguilar-Soto, J.G., Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., May-Arrioja, D.A., Fiber optic temperature sensor based on multimode interference effects (2011) J. Phys., 274, p. 012011 Wang, Q., Farrell, G., Yan, W., Investigation on singlemode-multimode-singlemode fiber structure (2008) J. Lightwave Technol., 26, pp. 512-519 Mohammed, W.S., Smith, P.W.E., Gu, X., Wavelength tunable fiber lens based on multimode interference (2004) J. Lightwave Technol., 22, pp. 469-477 Mehta, A., Mohammed, W., Johnson, E.G., Multimode interference-based fiber-optic displacement sensor (2003) IEEE Photon. Technol. Lett., 15, pp. 1129-1131 Abbate, G., Bernini, U., Ragozzino, E., Somma, F., The temperature dependence of the refractive index of water (1978) J. Phys. D, 11, pp. 1167-1172 Owens, J.C., Optical refractive index of air: Dependence on pressure, temperature and composition (1967) Appl. Opt., 6, pp. 51-59 Kawano, K., Kitoh, T., (2001) Introduction to Optical Waveguide Analysis, pp. 165-230. , Wiley Chap. 5 Silva, S., Santos, J.L., Malcata, F.X., Kobelke, J., Schuster, K., Frazäo, O., Optical refractometer based on large-core, air-clad photonic crystal fibers (2011) Opt. Lett., 36, pp. 852-854 Lee, S.T., Gin, J., Nampoori, V.P.N., Vallabhan, C.P.G., Unnikrishnan, N.V., Radhakrishnan, P., A sensitive fibre optic pH sensor using multiple sol-gel coatings (2001) J. Opt. A, 3, pp. 355-359