dc.creatorSilva S.
dc.creatorPachon E.G.P.
dc.creatorFranco M.A.R.
dc.creatorHayashi J.G.
dc.creatorMalcata F.X.
dc.creatorFrazao O.
dc.creatorJorge P.
dc.creatorCordeiro C.M.B.
dc.date2012
dc.date2015-06-25T20:25:49Z
dc.date2015-11-26T15:22:17Z
dc.date2015-06-25T20:25:49Z
dc.date2015-11-26T15:22:17Z
dc.date.accessioned2018-03-28T22:31:36Z
dc.date.available2018-03-28T22:31:36Z
dc.identifier
dc.identifierApplied Optics. Optical Society Of American (osa), v. 51, n. 16, p. 3236 - 3242, 2012.
dc.identifier1559128X
dc.identifier10.1364/AO.51.003236
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861833107&partnerID=40&md5=fba9a456e97865307dae13344dc3efe0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90545
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90545
dc.identifier2-s2.0-84861833107
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260366
dc.descriptionThe proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 7mu;m) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of-1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation. © 2012 Optical Society of America.
dc.description51
dc.description16
dc.description3236
dc.description3242
dc.descriptionKumar, A., Varshney, R.K., Antony, C.S., Sharma, P., Transmission characteristics of SMS fiber optic sensor structures (2003) Opt. Commun., 219, pp. 215-219
dc.descriptionWang, Q., Farrell, G., Multimode-fiber-based edge filter for optical wavelength measurement application (2006) Microw. Opt. Technol. Lett., 48, pp. 900-902
dc.descriptionWang, P., Brambilla, G., Ding, M., Semenova, Y., Wu, Q., Farrell, G., High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference (2011) Opt. Lett., 36, pp. 2233-2235
dc.descriptionHatta, A.M., Semenova, Y., Wu, Q., Farrell, G., Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme (2010) Appl. Opt., 49, pp. 536-541
dc.descriptionSilva, S., Frazäo, O., Viegas, J., Ferreira, L.A., Araújo, F.M., Malcata, F.X., Santos, J.L., Temperature and strainindependent curvature sensor based on a singlemode/ multimode fiber optic structure (2011) Meas. Sci. Technol., 22, p. 085201
dc.descriptionSoldano, L.B., Pennings, E.C.M., Optical multi-mode interference devices based on self-imaging: Principles and applications (1995) J. Lightwave Technol., 13, pp. 615-627
dc.descriptionMohammed, W.S., Smith, P.W.E., Gu, X., All-fiber multimode interference bandpass filter (2006) Opt. Lett., 31, pp. 2547-2549
dc.descriptionAntonio-Lopez, J.E., Castillo-Guzman, A., May-Arrioja, D.A., Selvas-Aguilar, R., Wa, P.L., Tunable multimode-interference bandpass fiber filter (2010) Opt. Lett., 35, pp. 324-326
dc.descriptionAntonio-Lopez, J.E., Sanchez-Mondragon, J.J., Wa, P.L., May-Arrioja, D.A., Fiber-optic sensor for liquid level measurement (2011) Opt. Lett., 36, pp. 3425-3427
dc.descriptionWu, Q., Semenova, Y., Wang, P., Hatta, A.M., Farrell, G., Experimental demonstration of a simple displacement sensor based on a bent single-mode-multimode-single-mode fiber structure (2011) Meas. Sci. Technol., 22, p. 025203
dc.descriptionWu, Q., Semenova, Y., Wang, P., Farrell, G., High sensitivity SMS fiber structure based refractometer-analysis and experiment (2011) Opt. Express, 19, pp. 7937-7944
dc.descriptionAguilar-Soto, J.G., Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., May-Arrioja, D.A., Fiber optic temperature sensor based on multimode interference effects (2011) J. Phys., 274, p. 012011
dc.descriptionWang, Q., Farrell, G., Yan, W., Investigation on singlemode-multimode-singlemode fiber structure (2008) J. Lightwave Technol., 26, pp. 512-519
dc.descriptionMohammed, W.S., Smith, P.W.E., Gu, X., Wavelength tunable fiber lens based on multimode interference (2004) J. Lightwave Technol., 22, pp. 469-477
dc.descriptionMehta, A., Mohammed, W., Johnson, E.G., Multimode interference-based fiber-optic displacement sensor (2003) IEEE Photon. Technol. Lett., 15, pp. 1129-1131
dc.descriptionAbbate, G., Bernini, U., Ragozzino, E., Somma, F., The temperature dependence of the refractive index of water (1978) J. Phys. D, 11, pp. 1167-1172
dc.descriptionOwens, J.C., Optical refractive index of air: Dependence on pressure, temperature and composition (1967) Appl. Opt., 6, pp. 51-59
dc.descriptionKawano, K., Kitoh, T., (2001) Introduction to Optical Waveguide Analysis, pp. 165-230. , Wiley Chap. 5
dc.descriptionSilva, S., Santos, J.L., Malcata, F.X., Kobelke, J., Schuster, K., Frazäo, O., Optical refractometer based on large-core, air-clad photonic crystal fibers (2011) Opt. Lett., 36, pp. 852-854
dc.descriptionLee, S.T., Gin, J., Nampoori, V.P.N., Vallabhan, C.P.G., Unnikrishnan, N.V., Radhakrishnan, P., A sensitive fibre optic pH sensor using multiple sol-gel coatings (2001) J. Opt. A, 3, pp. 355-359
dc.languageen
dc.publisherOptical Society of American (OSA)
dc.relationApplied Optics
dc.rightsfechado
dc.sourceScopus
dc.titleUltrahigh-sensitivity Temperature Fiber Sensor Based On Multimode Interference
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución