Actas de congresos
The Maxwell And Navier-stokes Equations That Follow From Einstein Equation In A Spacetime Containing A Killing Vector Field
Registro en:
9780735410954
Aip Conference Proceedings. , v. 1483, n. , p. 277 - 295, 2012.
0094243X
10.1063/1.4756974
2-s2.0-84874462380
Autor
Rodrigues F.G.
Rodrigues Jr. W.A.
Da Rocha R.
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this paper we are concerned to reveal that any spacetime structure 〈M, g, D, τg, ↑〉, which is a model of a gravitational field in General Relativity generated by an energy-momentum tensor T - and which contains at least one nontrivial Killing vector field A - is such that the 2-form field F = dA (where A = g(A,)) satisfies a Maxwell like equation - with a well determined current that contains a term of the superconducting type- which follows directly from Einstein equation. Moreover, we show that the resulting Maxwell like equations, under an additional condition imposed to the Killing vector field, may be written as a Navier-Stokes like equation as well. As a result, we have a set consisting of Einstein, Maxwell and Navier-Stokes equations, that follows sequentially from the first one under precise mathematical conditions and once some identifications about field variables are evinced, as explained in details throughout the text. We compare and emulate our results with others on the same subject appearing in the literature. In Appendix A we fix our notation and recall some necessary material concerning the theory of differential forms, Lie derivatives and the Clifford bundle formalism used in this paper. Moreover, we comment in Appendix B on some analogies (and main differences) between our results to the ones obtained long ago by Bergmann and Kommar which are reviewed and briefly criticized. © 2012 American Institute of Physics. 1483
277 295 Cons. Nac. Desenvolv. Cient. Tecnol. (CNPq),Coordenacao Aperfeicoamento Pessoal Nivel Super. (CAPES),Fund. Amparo Pesqui. Estado Rio de Janeiro (FAPERJ),International Centre for Theoretical Physics (ICTP),Centro Latino Americano de Fisica (CLAF) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M., (2008) JHEP, 2, p. 045. , arXiv:0712. 2456 [hep-th]] Bhattacharyya, S., Minwalla, S., Wadia, S.R., (2009) JHEP, 8, p. 059. , arXiv:0810. 1545 [hep-th]] Bergmann, P.G., (1958) Phys. Rev., 112, pp. 287-289 Breedberg, I., Keller, C., Lysov, V., Strominger, A., arXiv: 1101. 2451 [hep-ph]]Chorin, A.J., Marsden, J.E., A Mathematical Introduction to Fluid Mechanics, p. 1993. , Springer-Verlag, New-York Da Rocha, R., Rodrigues Jr., W.A., (2010) J. Phys. A: Math. Theor., 43, p. 205206. , arXiv:0910. 2021 [math-ph]] Da Rocha, R., Rodrigues Jr., W.A., (2008) Adv. Appl. Clifford Alg., 18, pp. 351-367. , arXiv:mathph/ 0510026] Eling, C., Fouxon, I., Oz, Y., arXiv:1004. 2632 [hep-th]]Fayos, F., Sopuerta, C.F., (2002) Class. Quant. Grav., 19, pp. 5489-5505. , arXiv:gr-qc/0205098] Fernandez, V.V., Rodrigues Jr., W.A., (2010) Gravitation As A Plastic Distortion of the Lorentz Vacuum, Fundamental Theories of Physics, 168. , Springer, Heidelberg Flanders, H., (1963) Differential Forms with Applications to the Physical Sciences, , Academic Press, New York Giglio, J.F.T., Rodrigues Jr., W.A., (2012) Annalen der Physik, 524, pp. 302-310. , arXiv:1111. 2206 [math-ph]] Geroch, R., (1968) J. Math. Phys., 9, pp. 1739-1744 Hubney, V.E., (2011) Class. Quant. Grav., 28, p. 114007. , arXiv:1011. 4948 [gr-qc]] Komar, A., (1958) Phys. Rev., 113, pp. 934-936 Landau, L.D., Lifshitz, E.M., The Classical Theory of Fields, p. 1975. , Pergamon Press, New York Marmanis, H., (1998) Phys. of Fluids, 10, pp. 1428-1437 Misner, C.W., Thorne, K.S., Wheeler, J.A., Gravitation, p. 1973. , W. H. Freeman. and Co. , San Francisco Mosna, R.A., Miralles, D., Vaz Jr., J., (2003) J. Phys. A, 36, pp. 4395-4405. , arXiv:math-ph/0212020] Notte-Cuello, E., Da Rocha, R., Rodrigues Jr., W.A., (2010) J. Phys. Math. 2, pp. P100506. , arXiv:0907. 2424 [math-ph]] Padmanabhan, T., (2011) Int. J. Mod. Phys. D, 20, pp. 2817-2822 Papapetrou, A., (1966) Ann. de L'I. Henri Poincaré, Section A, 4, pp. 83-105 Rangamani, M., (2009) Class. Quant. Grav., 26, p. 224003. , arXiv:0905. 4352 [hep-th]] Rodrigues Jr., W.A., Capelas De Oliveira, E., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach, Lecture Notes in Physics, p. 722. , Springer, Heidelberg Rodrigues Jr., W.A., (2010) Adv. Appl. Clifford Alg., 20, pp. 871-884 Rodrigues Jr., W.A., (2012) Rep. Math. Phys., 69, pp. 265-279. , arXiv:1109. 5272v3 [math-ph]] Sanchez, M., (1977) Nonlinear Analysis, Meth. Applications, 30, pp. 634-654 Sachs, R.K., Wu, H., General Relativity for Mathematicians, p. 1977. , Springer-Verlag, New York Schmelzer, I., (2012) Adv. Appl. Clifford Alg., 22, pp. 203-242. , arXiv:gr-qc/0205035] Sulaiman, A., Handoko, L.T., (2009) Int. J. Mod. Phys. A, 24, pp. 3630-3637. , arXiv:physics/0508219 [physics. flu-dyn]] Sulaiman, A., Djun, T.P., Handoko, L.T., (2006) J. Theor. Comput. Stud., 5, p. 0401. , arXiv:physics/0508086 [physics. flu-dyn]] Wald, R.M., General Relativity, p. 1984. , University of Chicago Press, Chicago Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, p. 1972. , J. Wiley & Sons, Inc. , New York