dc.creatorRodrigues F.G.
dc.creatorRodrigues Jr. W.A.
dc.creatorDa Rocha R.
dc.date2012
dc.date2015-06-25T20:25:20Z
dc.date2015-11-26T15:21:07Z
dc.date2015-06-25T20:25:20Z
dc.date2015-11-26T15:21:07Z
dc.date.accessioned2018-03-28T22:30:38Z
dc.date.available2018-03-28T22:30:38Z
dc.identifier9780735410954
dc.identifierAip Conference Proceedings. , v. 1483, n. , p. 277 - 295, 2012.
dc.identifier0094243X
dc.identifier10.1063/1.4756974
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84874462380&partnerID=40&md5=a485c721ecbe1a7bad8b117c6e2fc1a3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90443
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90443
dc.identifier2-s2.0-84874462380
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1260150
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this paper we are concerned to reveal that any spacetime structure 〈M, g, D, τg, ↑〉, which is a model of a gravitational field in General Relativity generated by an energy-momentum tensor T - and which contains at least one nontrivial Killing vector field A - is such that the 2-form field F = dA (where A = g(A,)) satisfies a Maxwell like equation - with a well determined current that contains a term of the superconducting type- which follows directly from Einstein equation. Moreover, we show that the resulting Maxwell like equations, under an additional condition imposed to the Killing vector field, may be written as a Navier-Stokes like equation as well. As a result, we have a set consisting of Einstein, Maxwell and Navier-Stokes equations, that follows sequentially from the first one under precise mathematical conditions and once some identifications about field variables are evinced, as explained in details throughout the text. We compare and emulate our results with others on the same subject appearing in the literature. In Appendix A we fix our notation and recall some necessary material concerning the theory of differential forms, Lie derivatives and the Clifford bundle formalism used in this paper. Moreover, we comment in Appendix B on some analogies (and main differences) between our results to the ones obtained long ago by Bergmann and Kommar which are reviewed and briefly criticized. © 2012 American Institute of Physics.
dc.description1483
dc.description
dc.description277
dc.description295
dc.descriptionCons. Nac. Desenvolv. Cient. Tecnol. (CNPq),Coordenacao Aperfeicoamento Pessoal Nivel Super. (CAPES),Fund. Amparo Pesqui. Estado Rio de Janeiro (FAPERJ),International Centre for Theoretical Physics (ICTP),Centro Latino Americano de Fisica (CLAF)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionBhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M., (2008) JHEP, 2, p. 045. , arXiv:0712. 2456 [hep-th]]
dc.descriptionBhattacharyya, S., Minwalla, S., Wadia, S.R., (2009) JHEP, 8, p. 059. , arXiv:0810. 1545 [hep-th]]
dc.descriptionBergmann, P.G., (1958) Phys. Rev., 112, pp. 287-289
dc.descriptionBreedberg, I., Keller, C., Lysov, V., Strominger, A., arXiv: 1101. 2451 [hep-ph]]Chorin, A.J., Marsden, J.E., A Mathematical Introduction to Fluid Mechanics, p. 1993. , Springer-Verlag, New-York
dc.descriptionDa Rocha, R., Rodrigues Jr., W.A., (2010) J. Phys. A: Math. Theor., 43, p. 205206. , arXiv:0910. 2021 [math-ph]]
dc.descriptionDa Rocha, R., Rodrigues Jr., W.A., (2008) Adv. Appl. Clifford Alg., 18, pp. 351-367. , arXiv:mathph/ 0510026]
dc.descriptionEling, C., Fouxon, I., Oz, Y., arXiv:1004. 2632 [hep-th]]Fayos, F., Sopuerta, C.F., (2002) Class. Quant. Grav., 19, pp. 5489-5505. , arXiv:gr-qc/0205098]
dc.descriptionFernandez, V.V., Rodrigues Jr., W.A., (2010) Gravitation As A Plastic Distortion of the Lorentz Vacuum, Fundamental Theories of Physics, 168. , Springer, Heidelberg
dc.descriptionFlanders, H., (1963) Differential Forms with Applications to the Physical Sciences, , Academic Press, New York
dc.descriptionGiglio, J.F.T., Rodrigues Jr., W.A., (2012) Annalen der Physik, 524, pp. 302-310. , arXiv:1111. 2206 [math-ph]]
dc.descriptionGeroch, R., (1968) J. Math. Phys., 9, pp. 1739-1744
dc.descriptionHubney, V.E., (2011) Class. Quant. Grav., 28, p. 114007. , arXiv:1011. 4948 [gr-qc]]
dc.descriptionKomar, A., (1958) Phys. Rev., 113, pp. 934-936
dc.descriptionLandau, L.D., Lifshitz, E.M., The Classical Theory of Fields, p. 1975. , Pergamon Press, New York
dc.descriptionMarmanis, H., (1998) Phys. of Fluids, 10, pp. 1428-1437
dc.descriptionMisner, C.W., Thorne, K.S., Wheeler, J.A., Gravitation, p. 1973. , W. H. Freeman. and Co. , San Francisco
dc.descriptionMosna, R.A., Miralles, D., Vaz Jr., J., (2003) J. Phys. A, 36, pp. 4395-4405. , arXiv:math-ph/0212020]
dc.descriptionNotte-Cuello, E., Da Rocha, R., Rodrigues Jr., W.A., (2010) J. Phys. Math. 2, pp. P100506. , arXiv:0907. 2424 [math-ph]]
dc.descriptionPadmanabhan, T., (2011) Int. J. Mod. Phys. D, 20, pp. 2817-2822
dc.descriptionPapapetrou, A., (1966) Ann. de L'I. Henri Poincaré, Section A, 4, pp. 83-105
dc.descriptionRangamani, M., (2009) Class. Quant. Grav., 26, p. 224003. , arXiv:0905. 4352 [hep-th]]
dc.descriptionRodrigues Jr., W.A., Capelas De Oliveira, E., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach, Lecture Notes in Physics, p. 722. , Springer, Heidelberg
dc.descriptionRodrigues Jr., W.A., (2010) Adv. Appl. Clifford Alg., 20, pp. 871-884
dc.descriptionRodrigues Jr., W.A., (2012) Rep. Math. Phys., 69, pp. 265-279. , arXiv:1109. 5272v3 [math-ph]]
dc.descriptionSanchez, M., (1977) Nonlinear Analysis, Meth. Applications, 30, pp. 634-654
dc.descriptionSachs, R.K., Wu, H., General Relativity for Mathematicians, p. 1977. , Springer-Verlag, New York
dc.descriptionSchmelzer, I., (2012) Adv. Appl. Clifford Alg., 22, pp. 203-242. , arXiv:gr-qc/0205035]
dc.descriptionSulaiman, A., Handoko, L.T., (2009) Int. J. Mod. Phys. A, 24, pp. 3630-3637. , arXiv:physics/0508219 [physics. flu-dyn]]
dc.descriptionSulaiman, A., Djun, T.P., Handoko, L.T., (2006) J. Theor. Comput. Stud., 5, p. 0401. , arXiv:physics/0508086 [physics. flu-dyn]]
dc.descriptionWald, R.M., General Relativity, p. 1984. , University of Chicago Press, Chicago
dc.descriptionWeinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, p. 1972. , J. Wiley & Sons, Inc. , New York
dc.languageen
dc.publisher
dc.relationAIP Conference Proceedings
dc.rightsaberto
dc.sourceScopus
dc.titleThe Maxwell And Navier-stokes Equations That Follow From Einstein Equation In A Spacetime Containing A Killing Vector Field
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución