Artículos de revistas
Steady Flow For Shear Thickening Fluids With Arbitrary Fluxes
Registro en:
Journal Of Differential Equations. , v. 252, n. 6, p. 3873 - 3898, 2012.
220396
10.1016/j.jde.2011.11.025
2-s2.0-84855957788
Autor
Dias G.J.
Santos M.M.
Institución
Resumen
We solve the stationary Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with unbounded outlets, in the case of shear thickening viscosity, i.e. the viscosity is given by the shear rate raised to the power p- 2 where p> 2. The flux assumes arbitrary given values and the Dirichlet integral of the velocity field grows at most linearly in the outlets of the domain. Under some smallness conditions on the "energy dispersion" we also show that the solution of this problem is unique. Our results are an extension of those obtained by O.A. Ladyzhenskaya and V.A. Solonnikov [O.A. Ladyzhenskaya, V.A. Solonnikov, Determination of the solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations in domains having an unbounded Dirichlet integral, J. Soviet Math. 21 (1983) 728-761] for Newtonian fluids (p= 2). © 2011 Elsevier Inc. 252 6 3873 3898 Amick, C.J., Steady solutions of the Navier-Stokes equations in unbounded channels and pipes (1977) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4 (3), pp. 473-513 Barrett, J.W., Liu, W.B., Finite element approximation of the p-Laplacian (1993) Math. Comp., 61 (204), pp. 523-537 Beirão da Veiga, H., Kaplický, H., Růžička, M., Boundary regularity of shear thickening flows (2011) J. Math. Fluid Mech., 13, pp. 387-404 Bird, R., Stewart, W., Lightfoof, E., (2007) Transport Phenomena, , Johh Wiley & Sons, Inc DiBenedetto, E., (1994) Degenerate Parabolic Equations, , Springer-Verlag, Berlin Evans, L.C., Partial Differential Equations (1998) Grad. Stud. Math., 19. , Amer. Math. Soc., Providence, RI Frehse, J., Málek, J., Steinhauer, M., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method (2003) SIAM J. Math. Anal., 34 (5), pp. 1064-1083 Galdi, G.P., (1994) An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vols. I, II, , Springer-Verlag, Berlin Ladyzhenskaya, O.A., New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them (1967) Proc. Steklov Inst. Math., 102, pp. 95-118 Ladyzhenskaya, O.A., On some modifications of the Navier-Stokes equations for large gradients of velocity (1968) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, pp. 126-154 Ladyzhenskaya, O.A., (1969) The Mathematical Theory of Viscous Incompressible Flow, , Gordon and Breach Science Publishers, New York, London, Paris Ladyzhenskaya, O.A., Solonnikov, V.A., Determination of the solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations in domains having an unbounded Dirichlet integral (1983) Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI). J. Soviet Math., 21, pp. 728-761. , English transl.: Lions, J.L., (1969) Quelques Méthods de Resolution des Problémes Aux Limites Non Linéaires, , Dunod, Gauthier-Villars Marušić-Paloka, E., Steady flow of a non-Newtonian fluid in unbounded channels and pipes (2000) Math. Models Methods Appl. Sci., 10 (9), pp. 1425-1445 Neff, P., On Korn's first inequality with non-constant coefficients (2002) Proc. Roy. Soc. Edinburgh Sect. A, 132 (1), pp. 221-243 Passerini, A., Patria, M.C., Thater, G., Steady flow of a viscous incompressible fluid in an unbounded "funnel-shaped" domain (1997) Ann. Mat. Pura Appl. (4), 173, pp. 43-62 Silva, F.V., On a lemma due to Ladyzhenskaya and Solonnikov and some applications (2006) Nonlinear Anal., 64, pp. 706-725 Silva, F.V., (2004), http://cutter.unicamp.br/document/?code=vtls000316769, Os problemas de Leray e de Ladyzhenskaya-Solonnikov para fluidos micropolares (Leray and Ladyzhenskaya-Solonnikov problems for micropolar fluids), doctoral thesis, in portuguese IMECC-Unicamp-BrazilSmagorinsky, J.S., General circulation experiments with the primitive equations. I. The basic experiment (1963) Mon. Weather Rev., 91, pp. 99-164 Solonnikov, V.A., Pileckas, K.I., Certain spaces of solenoidal vectors, and the solvability of a boundary value problem for a system of Navier-Stokes equations in domains with noncompact boundaries (1986) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). J. Soviet Math., 34, pp. 2101-2111. , English transl.: Stein, E.M., (1970) Singular Integrals and Differentiability Properties of Functions, , Princeton University Press, Princeton