dc.creatorDias G.J.
dc.creatorSantos M.M.
dc.date2012
dc.date2015-06-25T20:23:34Z
dc.date2015-11-26T15:19:18Z
dc.date2015-06-25T20:23:34Z
dc.date2015-11-26T15:19:18Z
dc.date.accessioned2018-03-28T22:28:50Z
dc.date.available2018-03-28T22:28:50Z
dc.identifier
dc.identifierJournal Of Differential Equations. , v. 252, n. 6, p. 3873 - 3898, 2012.
dc.identifier220396
dc.identifier10.1016/j.jde.2011.11.025
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84855957788&partnerID=40&md5=62213d2294d4633cf531a02a7a7e1cff
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90059
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90059
dc.identifier2-s2.0-84855957788
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259711
dc.descriptionWe solve the stationary Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with unbounded outlets, in the case of shear thickening viscosity, i.e. the viscosity is given by the shear rate raised to the power p- 2 where p> 2. The flux assumes arbitrary given values and the Dirichlet integral of the velocity field grows at most linearly in the outlets of the domain. Under some smallness conditions on the "energy dispersion" we also show that the solution of this problem is unique. Our results are an extension of those obtained by O.A. Ladyzhenskaya and V.A. Solonnikov [O.A. Ladyzhenskaya, V.A. Solonnikov, Determination of the solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations in domains having an unbounded Dirichlet integral, J. Soviet Math. 21 (1983) 728-761] for Newtonian fluids (p= 2). © 2011 Elsevier Inc.
dc.description252
dc.description6
dc.description3873
dc.description3898
dc.descriptionAmick, C.J., Steady solutions of the Navier-Stokes equations in unbounded channels and pipes (1977) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4 (3), pp. 473-513
dc.descriptionBarrett, J.W., Liu, W.B., Finite element approximation of the p-Laplacian (1993) Math. Comp., 61 (204), pp. 523-537
dc.descriptionBeirão da Veiga, H., Kaplický, H., Růžička, M., Boundary regularity of shear thickening flows (2011) J. Math. Fluid Mech., 13, pp. 387-404
dc.descriptionBird, R., Stewart, W., Lightfoof, E., (2007) Transport Phenomena, , Johh Wiley & Sons, Inc
dc.descriptionDiBenedetto, E., (1994) Degenerate Parabolic Equations, , Springer-Verlag, Berlin
dc.descriptionEvans, L.C., Partial Differential Equations (1998) Grad. Stud. Math., 19. , Amer. Math. Soc., Providence, RI
dc.descriptionFrehse, J., Málek, J., Steinhauer, M., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method (2003) SIAM J. Math. Anal., 34 (5), pp. 1064-1083
dc.descriptionGaldi, G.P., (1994) An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vols. I, II, , Springer-Verlag, Berlin
dc.descriptionLadyzhenskaya, O.A., New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them (1967) Proc. Steklov Inst. Math., 102, pp. 95-118
dc.descriptionLadyzhenskaya, O.A., On some modifications of the Navier-Stokes equations for large gradients of velocity (1968) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, pp. 126-154
dc.descriptionLadyzhenskaya, O.A., (1969) The Mathematical Theory of Viscous Incompressible Flow, , Gordon and Breach Science Publishers, New York, London, Paris
dc.descriptionLadyzhenskaya, O.A., Solonnikov, V.A., Determination of the solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations in domains having an unbounded Dirichlet integral (1983) Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI). J. Soviet Math., 21, pp. 728-761. , English transl.:
dc.descriptionLions, J.L., (1969) Quelques Méthods de Resolution des Problémes Aux Limites Non Linéaires, , Dunod, Gauthier-Villars
dc.descriptionMarušić-Paloka, E., Steady flow of a non-Newtonian fluid in unbounded channels and pipes (2000) Math. Models Methods Appl. Sci., 10 (9), pp. 1425-1445
dc.descriptionNeff, P., On Korn's first inequality with non-constant coefficients (2002) Proc. Roy. Soc. Edinburgh Sect. A, 132 (1), pp. 221-243
dc.descriptionPasserini, A., Patria, M.C., Thater, G., Steady flow of a viscous incompressible fluid in an unbounded "funnel-shaped" domain (1997) Ann. Mat. Pura Appl. (4), 173, pp. 43-62
dc.descriptionSilva, F.V., On a lemma due to Ladyzhenskaya and Solonnikov and some applications (2006) Nonlinear Anal., 64, pp. 706-725
dc.descriptionSilva, F.V., (2004), http://cutter.unicamp.br/document/?code=vtls000316769, Os problemas de Leray e de Ladyzhenskaya-Solonnikov para fluidos micropolares (Leray and Ladyzhenskaya-Solonnikov problems for micropolar fluids), doctoral thesis, in portuguese
dc.descriptionIMECC-Unicamp-BrazilSmagorinsky, J.S., General circulation experiments with the primitive equations. I. The basic experiment (1963) Mon. Weather Rev., 91, pp. 99-164
dc.descriptionSolonnikov, V.A., Pileckas, K.I., Certain spaces of solenoidal vectors, and the solvability of a boundary value problem for a system of Navier-Stokes equations in domains with noncompact boundaries (1986) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). J. Soviet Math., 34, pp. 2101-2111. , English transl.:
dc.descriptionStein, E.M., (1970) Singular Integrals and Differentiability Properties of Functions, , Princeton University Press, Princeton
dc.languageen
dc.publisher
dc.relationJournal of Differential Equations
dc.rightsfechado
dc.sourceScopus
dc.titleSteady Flow For Shear Thickening Fluids With Arbitrary Fluxes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución