Artículos de revistas
Graded Polynomial Identities And Specht Property Of The Lie Algebra Sl2
Registro en:
Journal Of Algebra. , v. 389, n. , p. 6 - 22, 2013.
218693
10.1016/j.jalgebra.2013.05.009
2-s2.0-84878927946
Autor
Giambruno A.
Souza M.D.S.
Institución
Resumen
Let G be a group. The Lie algebra sl2 of 2 × 2 traceless matrices over a field K can be endowed up to isomorphism, with three distinct non-trivial G-gradings induced by the groups Z2, Z2×Z2 and Z. It has been recently shown (Koshlukov, 2008 [8]) that for each grading the ideal of G-graded identities has a finite basis.In this paper we prove that when char(K)=0, the algebra sl2 endowed with each of the above three gradings has an ideal of graded identities IdG(sl2) satisfying the Specht property, i.e., every ideal of graded identities containing IdG(sl2) is finitely based. © 2013 Elsevier Inc. 389
6 22 Bahturin, Y., Kochetov, M., Classification of group gradings on simple Lie algebras of types A, B, C and D (2010) J. Algebra, 324 (11), pp. 2971-2989 Drensky, V., (1999) Free Algebras and PI-Algebras, , Springer-Verlag, Singapore Drensky, V., Identities in Lie algebras (1974) Algebra Logika. Algebra Logic, 13, pp. 150-165. , (in Russian) English translation in: Giambruno, A., Zaicev, M., Polynomial identities and asymptotic methods (2005) Math. Surveys Monogr., 122 Higman, G., Ordering by divisibility in abstract algebras (1952) Proc. Lond. Math. Soc. (3), 2, pp. 326-336 James, G., Kerber, A., The Representation Theory of the Symmetric Group (1981) Encyclopedia Math. Appl., 16. , Addison-Wesley, London Kemer, A.R., Ideals of Identities of Associative Algebras (1991) Transl. Math. Monogr., 87. , American Mathematical Society, Providence, RI Koshlukov, P., Graded polynomial identities for the Lie algebra sl2(K) (2008) Internat. J. Algebra Comput., 18 (5), pp. 825-836 Razmyslov, Y., Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (1973) Algebra Logika. Algebra Logic, 12 (1), pp. 47-63. , (in Russian) English translation in: Razmyslov, Y., Identities of Algebras and Their Representations (1994) Transl. Math. Monogr., 138. , American Mathematical Society, Providence, RI Repin, D.V., Graded identities of a simple three-dimensional Lie algebra (2004) Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2 (SPEC. ISSUE.), pp. 5-16. , (in Russian) Vaughan-Lee, M.R., Varieties of Lie algebras (1970) Quart. J. Math. Oxford Ser. (2), 21, pp. 297-308