dc.creatorGiambruno A.
dc.creatorSouza M.D.S.
dc.date2013
dc.date2015-06-25T19:17:53Z
dc.date2015-11-26T15:15:43Z
dc.date2015-06-25T19:17:53Z
dc.date2015-11-26T15:15:43Z
dc.date.accessioned2018-03-28T22:25:32Z
dc.date.available2018-03-28T22:25:32Z
dc.identifier
dc.identifierJournal Of Algebra. , v. 389, n. , p. 6 - 22, 2013.
dc.identifier218693
dc.identifier10.1016/j.jalgebra.2013.05.009
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84878927946&partnerID=40&md5=3196ecfc7743cfcf84b17ec03e1a3f73
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89630
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89630
dc.identifier2-s2.0-84878927946
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259077
dc.descriptionLet G be a group. The Lie algebra sl2 of 2 × 2 traceless matrices over a field K can be endowed up to isomorphism, with three distinct non-trivial G-gradings induced by the groups Z2, Z2×Z2 and Z. It has been recently shown (Koshlukov, 2008 [8]) that for each grading the ideal of G-graded identities has a finite basis.In this paper we prove that when char(K)=0, the algebra sl2 endowed with each of the above three gradings has an ideal of graded identities IdG(sl2) satisfying the Specht property, i.e., every ideal of graded identities containing IdG(sl2) is finitely based. © 2013 Elsevier Inc.
dc.description389
dc.description
dc.description6
dc.description22
dc.descriptionBahturin, Y., Kochetov, M., Classification of group gradings on simple Lie algebras of types A, B, C and D (2010) J. Algebra, 324 (11), pp. 2971-2989
dc.descriptionDrensky, V., (1999) Free Algebras and PI-Algebras, , Springer-Verlag, Singapore
dc.descriptionDrensky, V., Identities in Lie algebras (1974) Algebra Logika. Algebra Logic, 13, pp. 150-165. , (in Russian)
dc.descriptionEnglish translation in:
dc.descriptionGiambruno, A., Zaicev, M., Polynomial identities and asymptotic methods (2005) Math. Surveys Monogr., 122
dc.descriptionHigman, G., Ordering by divisibility in abstract algebras (1952) Proc. Lond. Math. Soc. (3), 2, pp. 326-336
dc.descriptionJames, G., Kerber, A., The Representation Theory of the Symmetric Group (1981) Encyclopedia Math. Appl., 16. , Addison-Wesley, London
dc.descriptionKemer, A.R., Ideals of Identities of Associative Algebras (1991) Transl. Math. Monogr., 87. , American Mathematical Society, Providence, RI
dc.descriptionKoshlukov, P., Graded polynomial identities for the Lie algebra sl2(K) (2008) Internat. J. Algebra Comput., 18 (5), pp. 825-836
dc.descriptionRazmyslov, Y., Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (1973) Algebra Logika. Algebra Logic, 12 (1), pp. 47-63. , (in Russian)
dc.descriptionEnglish translation in:
dc.descriptionRazmyslov, Y., Identities of Algebras and Their Representations (1994) Transl. Math. Monogr., 138. , American Mathematical Society, Providence, RI
dc.descriptionRepin, D.V., Graded identities of a simple three-dimensional Lie algebra (2004) Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2 (SPEC. ISSUE.), pp. 5-16. , (in Russian)
dc.descriptionVaughan-Lee, M.R., Varieties of Lie algebras (1970) Quart. J. Math. Oxford Ser. (2), 21, pp. 297-308
dc.languageen
dc.publisher
dc.relationJournal of Algebra
dc.rightsfechado
dc.sourceScopus
dc.titleGraded Polynomial Identities And Specht Property Of The Lie Algebra Sl2
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución