Artículos de revistas
Dna And Graphene As A New Efficient Platform For Entrapment Of Methylene Blue (mb): Studies Of The Electrocatalytic Oxidation Of β-nicotinamide Adenine Dinucleotide
Registro en:
Electrochimica Acta. , v. 111, n. , p. 543 - 551, 2013.
134686
10.1016/j.electacta.2013.08.037
2-s2.0-84883509237
Autor
Ferreira G.M.M.
De Oliveira F.M.
Leite F.R.F.
Maroneze C.M.
Kubota L.T.
Damos F.S.
Luz R.D.C.S.
Institución
Resumen
The modification of glassy carbon (GC) electrode with deoxyribonucleic acid (DNA) and grapheneis utilized as a new efficient platform for entrapment of methylene blue (MB). Electrochemical andelectroanalytical properties of the modified electrode (DNA/graphene/MB) were investigated by cyclicvoltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry techniques. Cyclicvoltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of β-nicotinamide adenine dinucleotide (NADH) at reduced overpotential (0.1 V vs. Ag/AgCl).It has been found that the DNA/graphene/MB modification has significantly enhanced the effective electrode response toward NADH oxidation. Cyclic voltammetry and rotating disk electrode (RDE) exper-iments indicated that the NADH oxidation reaction involves two electrons and an electrocatalytic rateconstant (kobs) of 1.75 × 106mol-1L s-1. The electrochemical sensor presented better performance in0.1 mol L-1phosphate buffer at pH 7.0. Other experimental parameters, such as the DNA, graphene, MB concentrations and the applied potential were optimized. Under optimized conditions, a linear response range from 10 μmol L-1to 1.50 mmol L-1was obtained with a sensitivity of 12.75 μA L μmol -1. The detection and quantification limits for NADH determination were 1.0 μmol L-1and 3.3 μmol L-1, respectively.© 2013 Elsevier Ltd. All rights reserved. 111
543 551 Li, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Yao, S., Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film (2013) Sens. Actuators B, 181, pp. 280-287 Creanga, C., El Murr, N., Development of new disposable NADH biosensors based on NADH oxidase (2011) J. Electroanal. Chem., 656, pp. 179-184 Gasnier, A., Pedano, M.L., Rubianes, M.D., Rivas, G.A., Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH (2013) Sens. Actuators B, 176, pp. 921-926 Dilgina, Y., Kizilkayab, B., Dilginc, D.G., Gökçel, H.I., Gorton, L., Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin (2013) Colloids Surf. B: Biointerfaces, 102, pp. 816-821 Teymourianc, H., Salimia, A., Hallaj, R., Low potential detection of NADH basedon Fe3O4nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor (2012) Biosens. Bioelectron., 33, pp. 60-68 Yuan, J., Chen, J., Wu, X., Fang, K., Niu, L., A NADH biosensor based on diphenylala-nine peptide/carbon nanotube nanocomposite (2011) J. Electroanal. Chem., 656, pp. 120-124 Guo, K., Qian, K., Zhang, S., Kong, J., Yu, C., Liu, B., Bio-electrocatalysis of NAD Hand ethanol based on graphene sheets modified electrodes (2011) Talanta, 85, pp. 1174-1179 Chen, C.H., Chen, Y.-C., Lin, M.-S., Amperometric determination of NADH withCo3O 4nanosheet modified electrode (2013) Biosens. Bioelectron., 42, pp. 379-384 Canevari, T.C., Vinhas, R.C.G., Landers, R., Gushikem, Y., SiO2/SnO2/Sb2O2micro-porous ceramic material for immobilization of Meldola's blue: Application as anelectrochemical sensor for NADH (2011) Biosens. Bioelectron., 26, pp. 2402-2406 Revenga-Parra, M., Gomez-Anquela, C., Garcia-Mendiola, T., Gonzalez, E., Pariente, F., Lorenzo, E., Grafted Azure A modified electrodes as disposable-nicotinamide adenine dinucleotide sensors (2012) Anal. Chim. Acta, 747, pp. 84-91 Sharifi, E., Salimi, A., Shams, E., Electrocatalytic activity of nickel oxide nanopar-ticles as mediatorless system for NADH and ethanol sensing at physiological pH solution (2013) Biosens. Bioelectron., 45, pp. 260-266 Sun, Y., Ren, Q., Liu, X., Zhao, S., Qin, Y., A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials (2013) Biosens. Bioelectron., 39, pp. 289-295 Sosna, M., Bonamore, A., Gorton, L., Boffi, A., Ferapontova, E.E., Direct electro-chemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphiteelectrodes (2013) Biosens. Bioelectron., 42, pp. 219-224 Zhaia, X., Li, Y., Liua, G., Cao, Y., Gao, H., Yue, C., Sheng, N., Electropolymerizedtoluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH (2013) Sens. Actuators B, 178, pp. 169-175 Ratinac, K.R., Yang, W., Gooding, J.J., Thordarson, P., Braet, F., Graphene and related materials in electrochemical sensing (2011) Electroanalysis, 23, pp. 803-826 Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Graphene based electrochemical sensors and biosensors: A review (2010) Electroanalysis, 22, pp. 1027-1036 Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224 Navaee, A., Salimi, A., Teymourian, H., Graphene nanosheets modified glassy car-bon electrode for simultaneous detection of heroine, morphine and noscapine (2012) Biosens. Bioelectron., 31, pp. 205-211 Banhart, F., Kotakoski, J., Krasheninnikov, A.V., Structural defects in graphene (2011) ACS Nano, 5, pp. 26-41 Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Processable aqueous dispersions of graphene nanosheets (2008) Nat. Nanotechnol., 3, pp. 101-105 Zhang, D., Fu, L., Liao, L., Liu, N., Dai, B., Zhang, C., Preparation, characterization, andapplication of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue (2012) Nano Res., 5, pp. 875-887 Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S., Chung, J.S., Kim, E.J., Hur, S.H., Synthesis of a highly conductive and large surfacearea graphene oxide hydrogel and its use in a supercapacitor (2013) J. Mater. Chem.A, 1, pp. 208-211 Wang, D., Li, Y., Hasin, P., Wu, Y., Preparation, characterization, and electrocat-alytic performance of graphene-methylene blue thin films (2011) Nano Res., 4, pp. 124-130 Premkunar, T., Geckeler, K.E., Graphene-DNA hybrid material: Assembly appli-cations and prospects (2012) Progr. Polym. Sci., 37, pp. 515-529 Boon, M., Jackson, N.M., Wightman, M.D., Kelley, S.O., Hill, M.G., Barton, J.K., Intercalative stacking: A critical feature of DNA charge-transport electrochemistry (2003) J. Phys. Chem. B, 107, pp. 11805-11812 De-Los-Santos-Álvarez, P., Rodríguez-Granda, P., Lobo-Castañón, M.J., Miranda-Ordieres, A.J., Tuñón-Blanco, P., New scheme for electrochemical detectionof DNA based on electrocatalytic oxidation of NADH (2003) Electrochem. Commun., 5, pp. 267-271 De-Los-Santos-Álvarez, P., Lobo-Castañón, J.M., Miranda-Ordieres, A.J., Tuñón-Blanco, P., Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNAintercalation adduct (2005) Electrochim. Acta, 50, pp. 1107-1112 Rajh, T., Saponjic, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Thurnauer, M.C., Charge transfer across the nanocrystalline-DNA interface: Probing DNA recognition (2004) Nano Lett., 4, pp. 1017-1023 Buzaneva, E., Karlash, A., Yakovkin, K., Shtogun, Y., Putselyk, S., Zherebetskiy, D., Gorchinskiy, A., Eklund, P., DNA nanotechnology of cabon nanotube cells: Physico-chemical models of self-organization and properties (2002) Mater. Sci. Eng. C, 19, pp. 41-45 Saito, R., Fujita, M., Dresselhaus, D., Dresselhaus, M., Electronic structure of graphene tubules based on C60 (1992) Phys. Rev. B, 46, pp. 1804-1811 Porath, D., Bezryadin, A., De Vries, S., Dekker, C., Direct measurement of electricaltransport through DNA molecules (2000) Nature, 403, pp. 635-638 Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339 Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., Ruoff, R.S., Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliatedgraphite oxide in the presence of poly(sodium 4-styrenesulfonate) (2006) J. Mater. Chem., 16, pp. 155-158 Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., A chemical route to graphenefor device applications (2007) Nano Lett., 7, pp. 3394-3398 Patil, J., Vickery, J.L., Scott, T.B., Mann, S., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA (2009) Adv. Mater., 21, pp. 3159-3164 Zhang, Q., Qiao, Y., Hao, F., Zhang, L., Wu, S., Li, Y., Li, J., Song, X.-M., Fabrication of a biocompatible and conductive platform based on a single-strandedDNA/graphene nanocomposite for direct electrochemistry and electrocatalysis (2010) Chem. Eur. J., 16, pp. 8133-8139 Kumar, S.P., Manjunatha, R., Nethravathi, C., Suresh, G.S., Rajamathi, M., Venkateshac, T.V., Electrocatalytic oxidation of NADH on functionalized graphenemodified graphite electrode (2011) Electroanalysis, 23, pp. 842-849 Ju, H., Shen, C., Electrocatalytic reduction and determination of dissolved oxygenat a poly(nile blue) modified electrode (2001) Electroanalysis, 13, pp. 789-793 Pheeney, C.G., Barton, J.K., DNA electrochemistry with tethered methylene blue (2012) Langmuir, 28, pp. 7063-7070 Maroneze, C.M., Arenas, L.T., Luz, R.C.S., Benvenutti, E.V., Landers, R., Gushikem, Y., Meldola blue immobilized on a new SiO2/TiO2/ graphite composite for electro-catalytic oxidation of NADH (2008) Electrochim. Acta, 53, pp. 4167-4175 Varodi, C., Gligor, D., Muresan, L.M., Carbon paste electrodes modified with methylene blue immobilized on a synthetic zeolite (2007) Rev. Roum. Chim., 52, pp. 81-88 Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine(PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683 Yan, Y., Zhang, M., Gong, K., Su, L., Gou, Z., Mao, L., Adsorption of methylene bluedye onto carbon nanotubes: A route to an electrochemically functional nano-structure and its layer-by-layer assembled nanocomposite (2005) Chem. Mater., 17, pp. 3457-3463 Anson, F.C., Ohsaka, T., Saveant, J.M., Diffusional pathways for multiply-chargedions incorporated in polyelectrolyte coatings on graphite electrodes. Cobaltoxalate (Co(C 2O4)3 3-) in coatings of protonated polylysine (1983) J. Phys. Chem., 87, pp. 640-647 Justino, D.D., Lage, A.L.A., Souto, D.E.P., Silva, J.V., Santosb, W.T.P., Luz, R.C.S., Damos, F.S., Study of the effects of surface pKa and electron transfer kinetics of electroactive 4-nitrothiophenol/4-mercaptobenzoic acid binary SAM on thesimultaneous determination of epinephrine and uric acid (2013) J. Electroanal. Chem, 703, pp. 158-165 Souto, D.E.P., Silva, J.V., Martins, H., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S., Development of a label-free immunosensor based on surface plasmon reso-nance technique for the detection of anti-Leishmania infantum antibodies incanine serum (2013) Biosens. Bioelectron., 46, pp. 22-29 Johnson, R.P., Richardson, J.A., Brown, T., Bartlett, P.N., A label-free, electrochem-ical SERS-based assay for detection of DNA hybridization and discrimination of mutations (2012) J. Am. Chem. Soc., 134, pp. 14099-14107 Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y., Kawai, T., A review of DNA functionalized/grafted carbon nanotubes and their characterization (2007) Sens. Actuators B: Chem., 122, pp. 672-682 Zhu, L., Zhai, J., Yang, R.C.T.I.A.N., Guo, L., Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes (2007) Biosens. Bioelectron., 22, pp. 2768-2773 Zare, H.R., Golabi, S.M., Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) (2000) J. Solid State Electrochem., 4, pp. 87-94 Doumèche, B., Blum, L.J., NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt (2010) Electrochem. Commun., 12, pp. 1398-1402 Radoi, A., Compagnone, D., Valcarcel, M.A., Placidi, P., Materazzi, S., Moscone, D., Palleschi, G., Detection of NADH via electrocatalytic oxidation at single-walledcarbon nanotubes modified with Variamine blue (2008) Electrochim. Acta, 53, pp. 2161-2169 Pessoa, C.A., Gushikem, Y., Kubota, L.T., Gorton, L., Preliminary electrochemicalstudy of phenothiazines and phenoxazines immobilized on zirconium phosphate (1997) J. Electroanal. Chem., 431, pp. 23-27 Pereira, A.C., Santos, A.S., Kubota, L.T., O-Phenylenediamine adsorbed onto silicagel modified with niobium oxide for electrocatalytic NADH oxidation (2003) Elec-trochim. Acta, 48, pp. 3541-3550 Analytical methods committee recommendations for the definition, estimation and use of the detection limit (1987) The Analyst, 112, pp. 199-204