dc.creatorFerreira G.M.M.
dc.creatorDe Oliveira F.M.
dc.creatorLeite F.R.F.
dc.creatorMaroneze C.M.
dc.creatorKubota L.T.
dc.creatorDamos F.S.
dc.creatorLuz R.D.C.S.
dc.date2013
dc.date2015-06-25T19:16:10Z
dc.date2015-11-26T15:14:07Z
dc.date2015-06-25T19:16:10Z
dc.date2015-11-26T15:14:07Z
dc.date.accessioned2018-03-28T22:24:13Z
dc.date.available2018-03-28T22:24:13Z
dc.identifier
dc.identifierElectrochimica Acta. , v. 111, n. , p. 543 - 551, 2013.
dc.identifier134686
dc.identifier10.1016/j.electacta.2013.08.037
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84883509237&partnerID=40&md5=cfa6e3d5f3b422630ef8e5b309439f26
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89421
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89421
dc.identifier2-s2.0-84883509237
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258796
dc.descriptionThe modification of glassy carbon (GC) electrode with deoxyribonucleic acid (DNA) and grapheneis utilized as a new efficient platform for entrapment of methylene blue (MB). Electrochemical andelectroanalytical properties of the modified electrode (DNA/graphene/MB) were investigated by cyclicvoltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry techniques. Cyclicvoltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of β-nicotinamide adenine dinucleotide (NADH) at reduced overpotential (0.1 V vs. Ag/AgCl).It has been found that the DNA/graphene/MB modification has significantly enhanced the effective electrode response toward NADH oxidation. Cyclic voltammetry and rotating disk electrode (RDE) exper-iments indicated that the NADH oxidation reaction involves two electrons and an electrocatalytic rateconstant (kobs) of 1.75 × 106mol-1L s-1. The electrochemical sensor presented better performance in0.1 mol L-1phosphate buffer at pH 7.0. Other experimental parameters, such as the DNA, graphene, MB concentrations and the applied potential were optimized. Under optimized conditions, a linear response range from 10 μmol L-1to 1.50 mmol L-1was obtained with a sensitivity of 12.75 μA L μmol -1. The detection and quantification limits for NADH determination were 1.0 μmol L-1and 3.3 μmol L-1, respectively.© 2013 Elsevier Ltd. All rights reserved.
dc.description111
dc.description
dc.description543
dc.description551
dc.descriptionLi, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Yao, S., Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film (2013) Sens. Actuators B, 181, pp. 280-287
dc.descriptionCreanga, C., El Murr, N., Development of new disposable NADH biosensors based on NADH oxidase (2011) J. Electroanal. Chem., 656, pp. 179-184
dc.descriptionGasnier, A., Pedano, M.L., Rubianes, M.D., Rivas, G.A., Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH (2013) Sens. Actuators B, 176, pp. 921-926
dc.descriptionDilgina, Y., Kizilkayab, B., Dilginc, D.G., Gökçel, H.I., Gorton, L., Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin (2013) Colloids Surf. B: Biointerfaces, 102, pp. 816-821
dc.descriptionTeymourianc, H., Salimia, A., Hallaj, R., Low potential detection of NADH basedon Fe3O4nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor (2012) Biosens. Bioelectron., 33, pp. 60-68
dc.descriptionYuan, J., Chen, J., Wu, X., Fang, K., Niu, L., A NADH biosensor based on diphenylala-nine peptide/carbon nanotube nanocomposite (2011) J. Electroanal. Chem., 656, pp. 120-124
dc.descriptionGuo, K., Qian, K., Zhang, S., Kong, J., Yu, C., Liu, B., Bio-electrocatalysis of NAD Hand ethanol based on graphene sheets modified electrodes (2011) Talanta, 85, pp. 1174-1179
dc.descriptionChen, C.H., Chen, Y.-C., Lin, M.-S., Amperometric determination of NADH withCo3O 4nanosheet modified electrode (2013) Biosens. Bioelectron., 42, pp. 379-384
dc.descriptionCanevari, T.C., Vinhas, R.C.G., Landers, R., Gushikem, Y., SiO2/SnO2/Sb2O2micro-porous ceramic material for immobilization of Meldola's blue: Application as anelectrochemical sensor for NADH (2011) Biosens. Bioelectron., 26, pp. 2402-2406
dc.descriptionRevenga-Parra, M., Gomez-Anquela, C., Garcia-Mendiola, T., Gonzalez, E., Pariente, F., Lorenzo, E., Grafted Azure A modified electrodes as disposable-nicotinamide adenine dinucleotide sensors (2012) Anal. Chim. Acta, 747, pp. 84-91
dc.descriptionSharifi, E., Salimi, A., Shams, E., Electrocatalytic activity of nickel oxide nanopar-ticles as mediatorless system for NADH and ethanol sensing at physiological pH solution (2013) Biosens. Bioelectron., 45, pp. 260-266
dc.descriptionSun, Y., Ren, Q., Liu, X., Zhao, S., Qin, Y., A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials (2013) Biosens. Bioelectron., 39, pp. 289-295
dc.descriptionSosna, M., Bonamore, A., Gorton, L., Boffi, A., Ferapontova, E.E., Direct electro-chemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphiteelectrodes (2013) Biosens. Bioelectron., 42, pp. 219-224
dc.descriptionZhaia, X., Li, Y., Liua, G., Cao, Y., Gao, H., Yue, C., Sheng, N., Electropolymerizedtoluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH (2013) Sens. Actuators B, 178, pp. 169-175
dc.descriptionRatinac, K.R., Yang, W., Gooding, J.J., Thordarson, P., Braet, F., Graphene and related materials in electrochemical sensing (2011) Electroanalysis, 23, pp. 803-826
dc.descriptionShao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Graphene based electrochemical sensors and biosensors: A review (2010) Electroanalysis, 22, pp. 1027-1036
dc.descriptionPark, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224
dc.descriptionNavaee, A., Salimi, A., Teymourian, H., Graphene nanosheets modified glassy car-bon electrode for simultaneous detection of heroine, morphine and noscapine (2012) Biosens. Bioelectron., 31, pp. 205-211
dc.descriptionBanhart, F., Kotakoski, J., Krasheninnikov, A.V., Structural defects in graphene (2011) ACS Nano, 5, pp. 26-41
dc.descriptionLi, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Processable aqueous dispersions of graphene nanosheets (2008) Nat. Nanotechnol., 3, pp. 101-105
dc.descriptionZhang, D., Fu, L., Liao, L., Liu, N., Dai, B., Zhang, C., Preparation, characterization, andapplication of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue (2012) Nano Res., 5, pp. 875-887
dc.descriptionLuan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S., Chung, J.S., Kim, E.J., Hur, S.H., Synthesis of a highly conductive and large surfacearea graphene oxide hydrogel and its use in a supercapacitor (2013) J. Mater. Chem.A, 1, pp. 208-211
dc.descriptionWang, D., Li, Y., Hasin, P., Wu, Y., Preparation, characterization, and electrocat-alytic performance of graphene-methylene blue thin films (2011) Nano Res., 4, pp. 124-130
dc.descriptionPremkunar, T., Geckeler, K.E., Graphene-DNA hybrid material: Assembly appli-cations and prospects (2012) Progr. Polym. Sci., 37, pp. 515-529
dc.descriptionBoon, M., Jackson, N.M., Wightman, M.D., Kelley, S.O., Hill, M.G., Barton, J.K., Intercalative stacking: A critical feature of DNA charge-transport electrochemistry (2003) J. Phys. Chem. B, 107, pp. 11805-11812
dc.descriptionDe-Los-Santos-Álvarez, P., Rodríguez-Granda, P., Lobo-Castañón, M.J., Miranda-Ordieres, A.J., Tuñón-Blanco, P., New scheme for electrochemical detectionof DNA based on electrocatalytic oxidation of NADH (2003) Electrochem. Commun., 5, pp. 267-271
dc.descriptionDe-Los-Santos-Álvarez, P., Lobo-Castañón, J.M., Miranda-Ordieres, A.J., Tuñón-Blanco, P., Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNAintercalation adduct (2005) Electrochim. Acta, 50, pp. 1107-1112
dc.descriptionRajh, T., Saponjic, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Thurnauer, M.C., Charge transfer across the nanocrystalline-DNA interface: Probing DNA recognition (2004) Nano Lett., 4, pp. 1017-1023
dc.descriptionBuzaneva, E., Karlash, A., Yakovkin, K., Shtogun, Y., Putselyk, S., Zherebetskiy, D., Gorchinskiy, A., Eklund, P., DNA nanotechnology of cabon nanotube cells: Physico-chemical models of self-organization and properties (2002) Mater. Sci. Eng. C, 19, pp. 41-45
dc.descriptionSaito, R., Fujita, M., Dresselhaus, D., Dresselhaus, M., Electronic structure of graphene tubules based on C60 (1992) Phys. Rev. B, 46, pp. 1804-1811
dc.descriptionPorath, D., Bezryadin, A., De Vries, S., Dekker, C., Direct measurement of electricaltransport through DNA molecules (2000) Nature, 403, pp. 635-638
dc.descriptionHummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339
dc.descriptionStankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., Ruoff, R.S., Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliatedgraphite oxide in the presence of poly(sodium 4-styrenesulfonate) (2006) J. Mater. Chem., 16, pp. 155-158
dc.descriptionGilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., A chemical route to graphenefor device applications (2007) Nano Lett., 7, pp. 3394-3398
dc.descriptionPatil, J., Vickery, J.L., Scott, T.B., Mann, S., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA (2009) Adv. Mater., 21, pp. 3159-3164
dc.descriptionZhang, Q., Qiao, Y., Hao, F., Zhang, L., Wu, S., Li, Y., Li, J., Song, X.-M., Fabrication of a biocompatible and conductive platform based on a single-strandedDNA/graphene nanocomposite for direct electrochemistry and electrocatalysis (2010) Chem. Eur. J., 16, pp. 8133-8139
dc.descriptionKumar, S.P., Manjunatha, R., Nethravathi, C., Suresh, G.S., Rajamathi, M., Venkateshac, T.V., Electrocatalytic oxidation of NADH on functionalized graphenemodified graphite electrode (2011) Electroanalysis, 23, pp. 842-849
dc.descriptionJu, H., Shen, C., Electrocatalytic reduction and determination of dissolved oxygenat a poly(nile blue) modified electrode (2001) Electroanalysis, 13, pp. 789-793
dc.descriptionPheeney, C.G., Barton, J.K., DNA electrochemistry with tethered methylene blue (2012) Langmuir, 28, pp. 7063-7070
dc.descriptionMaroneze, C.M., Arenas, L.T., Luz, R.C.S., Benvenutti, E.V., Landers, R., Gushikem, Y., Meldola blue immobilized on a new SiO2/TiO2/ graphite composite for electro-catalytic oxidation of NADH (2008) Electrochim. Acta, 53, pp. 4167-4175
dc.descriptionVarodi, C., Gligor, D., Muresan, L.M., Carbon paste electrodes modified with methylene blue immobilized on a synthetic zeolite (2007) Rev. Roum. Chim., 52, pp. 81-88
dc.descriptionLuz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine(PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683
dc.descriptionYan, Y., Zhang, M., Gong, K., Su, L., Gou, Z., Mao, L., Adsorption of methylene bluedye onto carbon nanotubes: A route to an electrochemically functional nano-structure and its layer-by-layer assembled nanocomposite (2005) Chem. Mater., 17, pp. 3457-3463
dc.descriptionAnson, F.C., Ohsaka, T., Saveant, J.M., Diffusional pathways for multiply-chargedions incorporated in polyelectrolyte coatings on graphite electrodes. Cobaltoxalate (Co(C 2O4)3 3-) in coatings of protonated polylysine (1983) J. Phys. Chem., 87, pp. 640-647
dc.descriptionJustino, D.D., Lage, A.L.A., Souto, D.E.P., Silva, J.V., Santosb, W.T.P., Luz, R.C.S., Damos, F.S., Study of the effects of surface pKa and electron transfer kinetics of electroactive 4-nitrothiophenol/4-mercaptobenzoic acid binary SAM on thesimultaneous determination of epinephrine and uric acid (2013) J. Electroanal. Chem, 703, pp. 158-165
dc.descriptionSouto, D.E.P., Silva, J.V., Martins, H., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S., Development of a label-free immunosensor based on surface plasmon reso-nance technique for the detection of anti-Leishmania infantum antibodies incanine serum (2013) Biosens. Bioelectron., 46, pp. 22-29
dc.descriptionJohnson, R.P., Richardson, J.A., Brown, T., Bartlett, P.N., A label-free, electrochem-ical SERS-based assay for detection of DNA hybridization and discrimination of mutations (2012) J. Am. Chem. Soc., 134, pp. 14099-14107
dc.descriptionDaniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y., Kawai, T., A review of DNA functionalized/grafted carbon nanotubes and their characterization (2007) Sens. Actuators B: Chem., 122, pp. 672-682
dc.descriptionZhu, L., Zhai, J., Yang, R.C.T.I.A.N., Guo, L., Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes (2007) Biosens. Bioelectron., 22, pp. 2768-2773
dc.descriptionZare, H.R., Golabi, S.M., Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) (2000) J. Solid State Electrochem., 4, pp. 87-94
dc.descriptionDoumèche, B., Blum, L.J., NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt (2010) Electrochem. Commun., 12, pp. 1398-1402
dc.descriptionRadoi, A., Compagnone, D., Valcarcel, M.A., Placidi, P., Materazzi, S., Moscone, D., Palleschi, G., Detection of NADH via electrocatalytic oxidation at single-walledcarbon nanotubes modified with Variamine blue (2008) Electrochim. Acta, 53, pp. 2161-2169
dc.descriptionPessoa, C.A., Gushikem, Y., Kubota, L.T., Gorton, L., Preliminary electrochemicalstudy of phenothiazines and phenoxazines immobilized on zirconium phosphate (1997) J. Electroanal. Chem., 431, pp. 23-27
dc.descriptionPereira, A.C., Santos, A.S., Kubota, L.T., O-Phenylenediamine adsorbed onto silicagel modified with niobium oxide for electrocatalytic NADH oxidation (2003) Elec-trochim. Acta, 48, pp. 3541-3550
dc.descriptionAnalytical methods committee recommendations for the definition, estimation and use of the detection limit (1987) The Analyst, 112, pp. 199-204
dc.languageen
dc.publisher
dc.relationElectrochimica Acta
dc.rightsfechado
dc.sourceScopus
dc.titleDna And Graphene As A New Efficient Platform For Entrapment Of Methylene Blue (mb): Studies Of The Electrocatalytic Oxidation Of β-nicotinamide Adenine Dinucleotide
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución