dc.creator | Ferreira G.M.M. | |
dc.creator | De Oliveira F.M. | |
dc.creator | Leite F.R.F. | |
dc.creator | Maroneze C.M. | |
dc.creator | Kubota L.T. | |
dc.creator | Damos F.S. | |
dc.creator | Luz R.D.C.S. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:16:10Z | |
dc.date | 2015-11-26T15:14:07Z | |
dc.date | 2015-06-25T19:16:10Z | |
dc.date | 2015-11-26T15:14:07Z | |
dc.date.accessioned | 2018-03-28T22:24:13Z | |
dc.date.available | 2018-03-28T22:24:13Z | |
dc.identifier | | |
dc.identifier | Electrochimica Acta. , v. 111, n. , p. 543 - 551, 2013. | |
dc.identifier | 134686 | |
dc.identifier | 10.1016/j.electacta.2013.08.037 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84883509237&partnerID=40&md5=cfa6e3d5f3b422630ef8e5b309439f26 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/89421 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/89421 | |
dc.identifier | 2-s2.0-84883509237 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258796 | |
dc.description | The modification of glassy carbon (GC) electrode with deoxyribonucleic acid (DNA) and grapheneis utilized as a new efficient platform for entrapment of methylene blue (MB). Electrochemical andelectroanalytical properties of the modified electrode (DNA/graphene/MB) were investigated by cyclicvoltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry techniques. Cyclicvoltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of β-nicotinamide adenine dinucleotide (NADH) at reduced overpotential (0.1 V vs. Ag/AgCl).It has been found that the DNA/graphene/MB modification has significantly enhanced the effective electrode response toward NADH oxidation. Cyclic voltammetry and rotating disk electrode (RDE) exper-iments indicated that the NADH oxidation reaction involves two electrons and an electrocatalytic rateconstant (kobs) of 1.75 × 106mol-1L s-1. The electrochemical sensor presented better performance in0.1 mol L-1phosphate buffer at pH 7.0. Other experimental parameters, such as the DNA, graphene, MB concentrations and the applied potential were optimized. Under optimized conditions, a linear response range from 10 μmol L-1to 1.50 mmol L-1was obtained with a sensitivity of 12.75 μA L μmol -1. The detection and quantification limits for NADH determination were 1.0 μmol L-1and 3.3 μmol L-1, respectively.© 2013 Elsevier Ltd. All rights reserved. | |
dc.description | 111 | |
dc.description | | |
dc.description | 543 | |
dc.description | 551 | |
dc.description | Li, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Yao, S., Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film (2013) Sens. Actuators B, 181, pp. 280-287 | |
dc.description | Creanga, C., El Murr, N., Development of new disposable NADH biosensors based on NADH oxidase (2011) J. Electroanal. Chem., 656, pp. 179-184 | |
dc.description | Gasnier, A., Pedano, M.L., Rubianes, M.D., Rivas, G.A., Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH (2013) Sens. Actuators B, 176, pp. 921-926 | |
dc.description | Dilgina, Y., Kizilkayab, B., Dilginc, D.G., Gökçel, H.I., Gorton, L., Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin (2013) Colloids Surf. B: Biointerfaces, 102, pp. 816-821 | |
dc.description | Teymourianc, H., Salimia, A., Hallaj, R., Low potential detection of NADH basedon Fe3O4nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor (2012) Biosens. Bioelectron., 33, pp. 60-68 | |
dc.description | Yuan, J., Chen, J., Wu, X., Fang, K., Niu, L., A NADH biosensor based on diphenylala-nine peptide/carbon nanotube nanocomposite (2011) J. Electroanal. Chem., 656, pp. 120-124 | |
dc.description | Guo, K., Qian, K., Zhang, S., Kong, J., Yu, C., Liu, B., Bio-electrocatalysis of NAD Hand ethanol based on graphene sheets modified electrodes (2011) Talanta, 85, pp. 1174-1179 | |
dc.description | Chen, C.H., Chen, Y.-C., Lin, M.-S., Amperometric determination of NADH withCo3O 4nanosheet modified electrode (2013) Biosens. Bioelectron., 42, pp. 379-384 | |
dc.description | Canevari, T.C., Vinhas, R.C.G., Landers, R., Gushikem, Y., SiO2/SnO2/Sb2O2micro-porous ceramic material for immobilization of Meldola's blue: Application as anelectrochemical sensor for NADH (2011) Biosens. Bioelectron., 26, pp. 2402-2406 | |
dc.description | Revenga-Parra, M., Gomez-Anquela, C., Garcia-Mendiola, T., Gonzalez, E., Pariente, F., Lorenzo, E., Grafted Azure A modified electrodes as disposable-nicotinamide adenine dinucleotide sensors (2012) Anal. Chim. Acta, 747, pp. 84-91 | |
dc.description | Sharifi, E., Salimi, A., Shams, E., Electrocatalytic activity of nickel oxide nanopar-ticles as mediatorless system for NADH and ethanol sensing at physiological pH solution (2013) Biosens. Bioelectron., 45, pp. 260-266 | |
dc.description | Sun, Y., Ren, Q., Liu, X., Zhao, S., Qin, Y., A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials (2013) Biosens. Bioelectron., 39, pp. 289-295 | |
dc.description | Sosna, M., Bonamore, A., Gorton, L., Boffi, A., Ferapontova, E.E., Direct electro-chemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphiteelectrodes (2013) Biosens. Bioelectron., 42, pp. 219-224 | |
dc.description | Zhaia, X., Li, Y., Liua, G., Cao, Y., Gao, H., Yue, C., Sheng, N., Electropolymerizedtoluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH (2013) Sens. Actuators B, 178, pp. 169-175 | |
dc.description | Ratinac, K.R., Yang, W., Gooding, J.J., Thordarson, P., Braet, F., Graphene and related materials in electrochemical sensing (2011) Electroanalysis, 23, pp. 803-826 | |
dc.description | Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Graphene based electrochemical sensors and biosensors: A review (2010) Electroanalysis, 22, pp. 1027-1036 | |
dc.description | Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224 | |
dc.description | Navaee, A., Salimi, A., Teymourian, H., Graphene nanosheets modified glassy car-bon electrode for simultaneous detection of heroine, morphine and noscapine (2012) Biosens. Bioelectron., 31, pp. 205-211 | |
dc.description | Banhart, F., Kotakoski, J., Krasheninnikov, A.V., Structural defects in graphene (2011) ACS Nano, 5, pp. 26-41 | |
dc.description | Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Processable aqueous dispersions of graphene nanosheets (2008) Nat. Nanotechnol., 3, pp. 101-105 | |
dc.description | Zhang, D., Fu, L., Liao, L., Liu, N., Dai, B., Zhang, C., Preparation, characterization, andapplication of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue (2012) Nano Res., 5, pp. 875-887 | |
dc.description | Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S., Chung, J.S., Kim, E.J., Hur, S.H., Synthesis of a highly conductive and large surfacearea graphene oxide hydrogel and its use in a supercapacitor (2013) J. Mater. Chem.A, 1, pp. 208-211 | |
dc.description | Wang, D., Li, Y., Hasin, P., Wu, Y., Preparation, characterization, and electrocat-alytic performance of graphene-methylene blue thin films (2011) Nano Res., 4, pp. 124-130 | |
dc.description | Premkunar, T., Geckeler, K.E., Graphene-DNA hybrid material: Assembly appli-cations and prospects (2012) Progr. Polym. Sci., 37, pp. 515-529 | |
dc.description | Boon, M., Jackson, N.M., Wightman, M.D., Kelley, S.O., Hill, M.G., Barton, J.K., Intercalative stacking: A critical feature of DNA charge-transport electrochemistry (2003) J. Phys. Chem. B, 107, pp. 11805-11812 | |
dc.description | De-Los-Santos-Álvarez, P., Rodríguez-Granda, P., Lobo-Castañón, M.J., Miranda-Ordieres, A.J., Tuñón-Blanco, P., New scheme for electrochemical detectionof DNA based on electrocatalytic oxidation of NADH (2003) Electrochem. Commun., 5, pp. 267-271 | |
dc.description | De-Los-Santos-Álvarez, P., Lobo-Castañón, J.M., Miranda-Ordieres, A.J., Tuñón-Blanco, P., Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNAintercalation adduct (2005) Electrochim. Acta, 50, pp. 1107-1112 | |
dc.description | Rajh, T., Saponjic, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Thurnauer, M.C., Charge transfer across the nanocrystalline-DNA interface: Probing DNA recognition (2004) Nano Lett., 4, pp. 1017-1023 | |
dc.description | Buzaneva, E., Karlash, A., Yakovkin, K., Shtogun, Y., Putselyk, S., Zherebetskiy, D., Gorchinskiy, A., Eklund, P., DNA nanotechnology of cabon nanotube cells: Physico-chemical models of self-organization and properties (2002) Mater. Sci. Eng. C, 19, pp. 41-45 | |
dc.description | Saito, R., Fujita, M., Dresselhaus, D., Dresselhaus, M., Electronic structure of graphene tubules based on C60 (1992) Phys. Rev. B, 46, pp. 1804-1811 | |
dc.description | Porath, D., Bezryadin, A., De Vries, S., Dekker, C., Direct measurement of electricaltransport through DNA molecules (2000) Nature, 403, pp. 635-638 | |
dc.description | Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339 | |
dc.description | Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., Ruoff, R.S., Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliatedgraphite oxide in the presence of poly(sodium 4-styrenesulfonate) (2006) J. Mater. Chem., 16, pp. 155-158 | |
dc.description | Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., A chemical route to graphenefor device applications (2007) Nano Lett., 7, pp. 3394-3398 | |
dc.description | Patil, J., Vickery, J.L., Scott, T.B., Mann, S., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA (2009) Adv. Mater., 21, pp. 3159-3164 | |
dc.description | Zhang, Q., Qiao, Y., Hao, F., Zhang, L., Wu, S., Li, Y., Li, J., Song, X.-M., Fabrication of a biocompatible and conductive platform based on a single-strandedDNA/graphene nanocomposite for direct electrochemistry and electrocatalysis (2010) Chem. Eur. J., 16, pp. 8133-8139 | |
dc.description | Kumar, S.P., Manjunatha, R., Nethravathi, C., Suresh, G.S., Rajamathi, M., Venkateshac, T.V., Electrocatalytic oxidation of NADH on functionalized graphenemodified graphite electrode (2011) Electroanalysis, 23, pp. 842-849 | |
dc.description | Ju, H., Shen, C., Electrocatalytic reduction and determination of dissolved oxygenat a poly(nile blue) modified electrode (2001) Electroanalysis, 13, pp. 789-793 | |
dc.description | Pheeney, C.G., Barton, J.K., DNA electrochemistry with tethered methylene blue (2012) Langmuir, 28, pp. 7063-7070 | |
dc.description | Maroneze, C.M., Arenas, L.T., Luz, R.C.S., Benvenutti, E.V., Landers, R., Gushikem, Y., Meldola blue immobilized on a new SiO2/TiO2/ graphite composite for electro-catalytic oxidation of NADH (2008) Electrochim. Acta, 53, pp. 4167-4175 | |
dc.description | Varodi, C., Gligor, D., Muresan, L.M., Carbon paste electrodes modified with methylene blue immobilized on a synthetic zeolite (2007) Rev. Roum. Chim., 52, pp. 81-88 | |
dc.description | Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine(PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683 | |
dc.description | Yan, Y., Zhang, M., Gong, K., Su, L., Gou, Z., Mao, L., Adsorption of methylene bluedye onto carbon nanotubes: A route to an electrochemically functional nano-structure and its layer-by-layer assembled nanocomposite (2005) Chem. Mater., 17, pp. 3457-3463 | |
dc.description | Anson, F.C., Ohsaka, T., Saveant, J.M., Diffusional pathways for multiply-chargedions incorporated in polyelectrolyte coatings on graphite electrodes. Cobaltoxalate (Co(C 2O4)3 3-) in coatings of protonated polylysine (1983) J. Phys. Chem., 87, pp. 640-647 | |
dc.description | Justino, D.D., Lage, A.L.A., Souto, D.E.P., Silva, J.V., Santosb, W.T.P., Luz, R.C.S., Damos, F.S., Study of the effects of surface pKa and electron transfer kinetics of electroactive 4-nitrothiophenol/4-mercaptobenzoic acid binary SAM on thesimultaneous determination of epinephrine and uric acid (2013) J. Electroanal. Chem, 703, pp. 158-165 | |
dc.description | Souto, D.E.P., Silva, J.V., Martins, H., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S., Development of a label-free immunosensor based on surface plasmon reso-nance technique for the detection of anti-Leishmania infantum antibodies incanine serum (2013) Biosens. Bioelectron., 46, pp. 22-29 | |
dc.description | Johnson, R.P., Richardson, J.A., Brown, T., Bartlett, P.N., A label-free, electrochem-ical SERS-based assay for detection of DNA hybridization and discrimination of mutations (2012) J. Am. Chem. Soc., 134, pp. 14099-14107 | |
dc.description | Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y., Kawai, T., A review of DNA functionalized/grafted carbon nanotubes and their characterization (2007) Sens. Actuators B: Chem., 122, pp. 672-682 | |
dc.description | Zhu, L., Zhai, J., Yang, R.C.T.I.A.N., Guo, L., Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes (2007) Biosens. Bioelectron., 22, pp. 2768-2773 | |
dc.description | Zare, H.R., Golabi, S.M., Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) (2000) J. Solid State Electrochem., 4, pp. 87-94 | |
dc.description | Doumèche, B., Blum, L.J., NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt (2010) Electrochem. Commun., 12, pp. 1398-1402 | |
dc.description | Radoi, A., Compagnone, D., Valcarcel, M.A., Placidi, P., Materazzi, S., Moscone, D., Palleschi, G., Detection of NADH via electrocatalytic oxidation at single-walledcarbon nanotubes modified with Variamine blue (2008) Electrochim. Acta, 53, pp. 2161-2169 | |
dc.description | Pessoa, C.A., Gushikem, Y., Kubota, L.T., Gorton, L., Preliminary electrochemicalstudy of phenothiazines and phenoxazines immobilized on zirconium phosphate (1997) J. Electroanal. Chem., 431, pp. 23-27 | |
dc.description | Pereira, A.C., Santos, A.S., Kubota, L.T., O-Phenylenediamine adsorbed onto silicagel modified with niobium oxide for electrocatalytic NADH oxidation (2003) Elec-trochim. Acta, 48, pp. 3541-3550 | |
dc.description | Analytical methods committee recommendations for the definition, estimation and use of the detection limit (1987) The Analyst, 112, pp. 199-204 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Electrochimica Acta | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Dna And Graphene As A New Efficient Platform For Entrapment Of Methylene Blue (mb): Studies Of The Electrocatalytic Oxidation Of β-nicotinamide Adenine Dinucleotide | |
dc.type | Artículos de revistas | |