Artículos de revistas
Micronization And Encapsulation Of Functional Pigments Using Supercritical Carbon Dioxide
Registro en:
Journal Of Food Process Engineering. , v. 36, n. 1, p. 36 - 49, 2013.
1458876
10.1111/j.1745-4530.2011.00651.x
2-s2.0-84872321495
Autor
Santos D.T.
Meireles M.A.A.
Institución
Resumen
This research involves experimental studies of supercritical fluid (SCF)-based micronization and encapsulation processes exploiting both solvent and antisolvent properties of supercritical CO2 for diverse functional pigments to extend the application of these natural functional pigments. First, the reliability of homemade experimental apparatuses designed and constructed by our research group was tested. Quercetin and β-carotene were used as model substances in the micronization process via supercritical antisolvent (SAS). Bixin-rich extract with polyethylene glycol (PEG) 10,000 as encapsulant material was used in the encapsulation process via SAS, while rutin and anthocyanin-rich extract with PEG 10,000 and ethanol as cosolvents were applied to the formation of polymeric microcapsules via rapid expansion of supercritical solutions (RESS). The processing parameters and the used levels were based on the literature data. SAS process successfully reduced the particle size of quercetin by 4.1 times, while conventional micronization process only reduced the particle size by 1.8 times. Furthermore, it was demonstrated that SAS process can be successfully utilized to coprecipitate microparticles of PEG loaded with bixin-rich extract. RESS process using ethanol as cosolvent was employed effectively to encapsulate rutin and anthocyanin-rich extract in the PEG matrix. The data obtained in this study are in good agreement with the previous values reported by several authors using similar operational conditions and equipment. Core material: encapsulant material ratio, core material physical properties, such as solubility in supercritical CO2 and in CO2 + ethanol, and viscosity were key parameters for these processes. PRACTICAL APPLICATIONS The application of natural food colorants with relevant antioxidant activities, such as carotenoids and flavonoids, as food additives in various food products is seriously hampered by their fast degradation triggered by light, temperature, presence of oxygen, insolubility in aqueous systems and low dispersibility, among others. Their particle size reduction and/or encapsulation have been successfully used to overcome all these drawbacks. SCFs have become an attractive alternative solvent due to their environmentally friendly properties. SCFs may be conveniently used for various applications such as extraction, reactions, micronization and encapsulation, among others. Studies showing the use of SCFs and/or the construction of apparatuses that use these green solvents for solubility enhancement of functional pigments with poor water solubility and/or avoiding degradation of these compounds are extremely important. © 2011 Wiley Periodicals, Inc. 36 1 36 49 Boutin, O., Petit-Gas, T., Badens, E., Powder micronization using a CO2 supercritical antisolvent type process: Comparison of different introduction devices (2009) Ind. Eng. Chem. Res., 48, pp. 5671-5678. , DOI: 10.1021/ie8017803 Braga, M.E.M., Meireles, M.A.A., Accelerated solvent extraction and fractioned extraction to obtain the Curcuma longa volatile oil and oleoresin (2007) J. Food Process Eng., 30, pp. 501-521. , DOI: 10.1111/j.1745-4530.2007.00133.x Can, Q., Carlfors, J., Turner, C., Carotenoids particle formation by supercritical fluid technologies (2009) Chin. J. Chem. Eng., 17, pp. 344-349. , DOI: 10.1016/S1004-9541(08)60214-1 Cocero, M.J., Martín, A., Mattea, F., Varona, S., Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications (2009) J. Supercrit. Fluids, 47, pp. 546-555. , DOI: 10.1016/j.supflu.2008.08.015 Franceschi, E., De Cesaro, A.M., Feiten, M., Ferreira, S.R.S., Dariva, C., Kunita, M.H., Rubira, A.F., Oliveira, J.V., Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2 (2008) J. Supercrit. Fluids, 47, pp. 259-269. , DOI: 10.1016/j.supflu.2008.08.002 Franceschi, E., De Cesaro, A.M., Ferreira, S.R.S., Oliveira, J.V., Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2 (2009) J. Food Eng., 95, pp. 656-663. , DOI: 10.1016/j.jfoodeng.2009.06.034 He, W.Z., Suo, Q.L., Hong, H.L., Li, G.M., Zhao, X.H., Li, C.P., Shan, A., Supercritical antisolvent micronization of natural carotene by the SEDS process through prefilming atomization (2006) Ind. Eng. Chem. Res., 45, pp. 2108-2115. , DOI: 10.1021/ie050993f He, W.Z., Suo, Q.L., Hong, H.L., Shan, A., Li, C.P., Huang, Y., Li, Y., Zhu, M., Production of natural carotene-dispersed polymer microparticles by SEDS-PA co-precipitation (2007) J. Mater Sci., 42, pp. 495-501. , DOI: 10.1007/s10853-006-1099-z Hertog, M.G.L., Hollman, P.C.H., Katan, M.B., Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands (1992) J. Agric. Food Chem., 40, pp. 2379-2383. , DOI: 10.1021/jf00024a011 Kongsombut, B., Tsutsumi, A., Suankaew, N., Charinpanitkul, T., Encapsulation of SiO2 and TiO2 fine powders with Poly(DL-lactic-co- glycolic acid) by rapid expansion of supercritical CO2 incorporated with ethanol cosolvent (2009) Ind. Eng. Chem. Res., 48, pp. 11230-11235. , DOI: 10.1021/ie900690v Martín, A., Cocero, M.J., Micronization processes with supercritical fluids: Fundamentals and mechanisms (2008) Adv. Drug Deliv. Rev., 60, pp. 339-350. , DOI: 10.1016/j.addr.2007.06.019 Martín, A., Mattea, F., Gutíerrez, L., Miguel, F., Cocero, M.J., Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process (2007) J. Supercrit. Fluids, 41, pp. 138-147. , DOI: 10.1016/j.supflu.2006.08.009 Matsuyama, K., Mishima, K., Hayashi, K.-I., Ishikawa, H., Matsuyama, H., Harada, T., Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent (2003) J. Appl. Polym. Sci., 89, pp. 742-752. , DOI: 10.1002/a12201 Mattea, F., Martin, A., Cocero, M.J., Co-precipitation of β-carotene and polyethylene glycol with compressed CO2 as an antisolvent: Effect of temperature and concentration (2008) Ind. Eng. Chem. Res., 47, pp. 3900-3906. , DOI: 10.1021/ie071326k Mattea, F., Martín, A., Cocero, M.J., Carotenoid processing with supercritical fluids (2009) J. Food Eng., 93, pp. 255-265. , DOI: 10.1016/j.jfoodeng.2009.01.030 Miguel, F., Martín, A., Mattea, F., Cocero, M.J., Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process (2008) Chem. Eng. Process, 47, pp. 1594-1602. , DOI: 10.1016/j.cep.2007.07.008 Nishikawa, D.O., Zague, V., Pinto, C.A.S., Vieira, R.P., Kaneko, T.M., Velasco, M.V.R., Baby, A.R., Avaliação da estabilidade de máscaras faciais peel-off contendo rutina (2007) Rev. Ciênc. Farm. Básica Apl., 28, pp. 227-232 Özen, G., Akbulut, M., Artik, N., (2009) Stability of Black Carrot Anthocyanins in the Turkish Delight (Lokum) during Storage, , (in press). DOI: 10.1111/j.1745-4530.2009.00412.x Pereira, C.G., Meireles, M.A.A., Evaluation of global yield, composition, antioxidant activity and cost of manufacturing of extracts from lemon verbena (Aloysia triphylla [L'Hérit.] Britton) and mango (Mangifera indica L.) leaves (2007) J. Food Process Eng., 30, pp. 150-173. , DOI: 10.1111/j.1745-4530.2007.00100.x Prado, J.M., Assis, A.R., Maróstica-Júnior, M.R., Meireles, M.A.A., Manufacturing cost of supercritical-extracted oils and carotenoids from Amazonian plants (2010) J. Food Process Eng., 33, pp. 348-369. , DOI: 10.1111/j.1745-4530.2008.00279.x Priamo, W.L., Cezaro, A.M., Ferreira, S.R.S., Oliveira, J.V., Precipitation and encapsulation of β-carotene in PHBV using carbon dioxide as anti-solvent (2010) J. Supercrit. Fluids, 54, pp. 103-109. , DOI: 10.1016/j.supflu.2010.02.013 Santos, D.T., Meireles, M.A.A., Jabuticaba as a source of functional pigments (2009) Phycog. Rev., 3, pp. 127-132 Santos, D.T., Meireles, M.A.A., Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends (2010) Open Chem. Eng. J., 4, pp. 42-50. , DOI: 10.2174/1874123101004020042 Santos, D.T., Veggi, P.C., Meireles, M.A.A., Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation (2010) J. Food Eng., 101, pp. 23-31 Seabra, I.J., Braga, M.E.M., Batista, M.T., De Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace (2010) J. Supercrit. Fluids, 54, pp. 145-152. , DOI: 10.1016/j.supflu.2010.05.001 Silva, G.F., Gamarra, F.M.C., Oliveira, A.L., Cabral, F.A., Extraction of bixin from annatto seeds using supercritical carbon dioxide (2008) Braz. J. Chem. Eng., 25, pp. 419-426. , DOI: 10.1590/S0104-66322008000200019 Suo, Q.L., He, W.Z., Huang, Y.C., Li, C.P., Hong, H.L., Li, Y.X., Zhu, M.D., Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization (2005) Powder Technol., 154, pp. 110-115. , DOI: 10.1016/j.powtec.2005.05.001 Tenório, A., Gordillo, M.D., Pereyra, C.M., Martínez De La Ossa, E.J., Relative importance of the operating conditions involved in the formation of nanoparticle of ampicillin by supercritical antisolvent precipitation (2007) Ind. Eng. Chem. Res., 46, pp. 114-123. , DOI: 10.1021/ie0606441 Tsutsumi, A., Ikeda, M., Chen, W., Iwatsuki, J., A nano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors (2003) Powder Technol., 138, pp. 211-215. , DOI: 10.1016/j.powtec.2003.09.001 Vatai, T., Skerget, M., Knez, Z., Extraction of phenolic compounds from elderberry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide (2009) J. Food Eng., 90, pp. 246-254. , DOI: 10.1016/j.jfoodeng.2008.06.028