dc.creator | Santos D.T. | |
dc.creator | Meireles M.A.A. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:15:55Z | |
dc.date | 2015-11-26T15:13:51Z | |
dc.date | 2015-06-25T19:15:55Z | |
dc.date | 2015-11-26T15:13:51Z | |
dc.date.accessioned | 2018-03-28T22:23:56Z | |
dc.date.available | 2018-03-28T22:23:56Z | |
dc.identifier | | |
dc.identifier | Journal Of Food Process Engineering. , v. 36, n. 1, p. 36 - 49, 2013. | |
dc.identifier | 1458876 | |
dc.identifier | 10.1111/j.1745-4530.2011.00651.x | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84872321495&partnerID=40&md5=f1d8c2e17d67bc17f395d2f8b77d83f2 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/89363 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/89363 | |
dc.identifier | 2-s2.0-84872321495 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258733 | |
dc.description | This research involves experimental studies of supercritical fluid (SCF)-based micronization and encapsulation processes exploiting both solvent and antisolvent properties of supercritical CO2 for diverse functional pigments to extend the application of these natural functional pigments. First, the reliability of homemade experimental apparatuses designed and constructed by our research group was tested. Quercetin and β-carotene were used as model substances in the micronization process via supercritical antisolvent (SAS). Bixin-rich extract with polyethylene glycol (PEG) 10,000 as encapsulant material was used in the encapsulation process via SAS, while rutin and anthocyanin-rich extract with PEG 10,000 and ethanol as cosolvents were applied to the formation of polymeric microcapsules via rapid expansion of supercritical solutions (RESS). The processing parameters and the used levels were based on the literature data. SAS process successfully reduced the particle size of quercetin by 4.1 times, while conventional micronization process only reduced the particle size by 1.8 times. Furthermore, it was demonstrated that SAS process can be successfully utilized to coprecipitate microparticles of PEG loaded with bixin-rich extract. RESS process using ethanol as cosolvent was employed effectively to encapsulate rutin and anthocyanin-rich extract in the PEG matrix. The data obtained in this study are in good agreement with the previous values reported by several authors using similar operational conditions and equipment. Core material: encapsulant material ratio, core material physical properties, such as solubility in supercritical CO2 and in CO2 + ethanol, and viscosity were key parameters for these processes. PRACTICAL APPLICATIONS The application of natural food colorants with relevant antioxidant activities, such as carotenoids and flavonoids, as food additives in various food products is seriously hampered by their fast degradation triggered by light, temperature, presence of oxygen, insolubility in aqueous systems and low dispersibility, among others. Their particle size reduction and/or encapsulation have been successfully used to overcome all these drawbacks. SCFs have become an attractive alternative solvent due to their environmentally friendly properties. SCFs may be conveniently used for various applications such as extraction, reactions, micronization and encapsulation, among others. Studies showing the use of SCFs and/or the construction of apparatuses that use these green solvents for solubility enhancement of functional pigments with poor water solubility and/or avoiding degradation of these compounds are extremely important. © 2011 Wiley Periodicals, Inc. | |
dc.description | 36 | |
dc.description | 1 | |
dc.description | 36 | |
dc.description | 49 | |
dc.description | Boutin, O., Petit-Gas, T., Badens, E., Powder micronization using a CO2 supercritical antisolvent type process: Comparison of different introduction devices (2009) Ind. Eng. Chem. Res., 48, pp. 5671-5678. , DOI: 10.1021/ie8017803 | |
dc.description | Braga, M.E.M., Meireles, M.A.A., Accelerated solvent extraction and fractioned extraction to obtain the Curcuma longa volatile oil and oleoresin (2007) J. Food Process Eng., 30, pp. 501-521. , DOI: 10.1111/j.1745-4530.2007.00133.x | |
dc.description | Can, Q., Carlfors, J., Turner, C., Carotenoids particle formation by supercritical fluid technologies (2009) Chin. J. Chem. Eng., 17, pp. 344-349. , DOI: 10.1016/S1004-9541(08)60214-1 | |
dc.description | Cocero, M.J., Martín, A., Mattea, F., Varona, S., Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications (2009) J. Supercrit. Fluids, 47, pp. 546-555. , DOI: 10.1016/j.supflu.2008.08.015 | |
dc.description | Franceschi, E., De Cesaro, A.M., Feiten, M., Ferreira, S.R.S., Dariva, C., Kunita, M.H., Rubira, A.F., Oliveira, J.V., Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2 (2008) J. Supercrit. Fluids, 47, pp. 259-269. , DOI: 10.1016/j.supflu.2008.08.002 | |
dc.description | Franceschi, E., De Cesaro, A.M., Ferreira, S.R.S., Oliveira, J.V., Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2 (2009) J. Food Eng., 95, pp. 656-663. , DOI: 10.1016/j.jfoodeng.2009.06.034 | |
dc.description | He, W.Z., Suo, Q.L., Hong, H.L., Li, G.M., Zhao, X.H., Li, C.P., Shan, A., Supercritical antisolvent micronization of natural carotene by the SEDS process through prefilming atomization (2006) Ind. Eng. Chem. Res., 45, pp. 2108-2115. , DOI: 10.1021/ie050993f | |
dc.description | He, W.Z., Suo, Q.L., Hong, H.L., Shan, A., Li, C.P., Huang, Y., Li, Y., Zhu, M., Production of natural carotene-dispersed polymer microparticles by SEDS-PA co-precipitation (2007) J. Mater Sci., 42, pp. 495-501. , DOI: 10.1007/s10853-006-1099-z | |
dc.description | Hertog, M.G.L., Hollman, P.C.H., Katan, M.B., Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands (1992) J. Agric. Food Chem., 40, pp. 2379-2383. , DOI: 10.1021/jf00024a011 | |
dc.description | Kongsombut, B., Tsutsumi, A., Suankaew, N., Charinpanitkul, T., Encapsulation of SiO2 and TiO2 fine powders with Poly(DL-lactic-co- glycolic acid) by rapid expansion of supercritical CO2 incorporated with ethanol cosolvent (2009) Ind. Eng. Chem. Res., 48, pp. 11230-11235. , DOI: 10.1021/ie900690v | |
dc.description | Martín, A., Cocero, M.J., Micronization processes with supercritical fluids: Fundamentals and mechanisms (2008) Adv. Drug Deliv. Rev., 60, pp. 339-350. , DOI: 10.1016/j.addr.2007.06.019 | |
dc.description | Martín, A., Mattea, F., Gutíerrez, L., Miguel, F., Cocero, M.J., Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process (2007) J. Supercrit. Fluids, 41, pp. 138-147. , DOI: 10.1016/j.supflu.2006.08.009 | |
dc.description | Matsuyama, K., Mishima, K., Hayashi, K.-I., Ishikawa, H., Matsuyama, H., Harada, T., Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent (2003) J. Appl. Polym. Sci., 89, pp. 742-752. , DOI: 10.1002/a12201 | |
dc.description | Mattea, F., Martin, A., Cocero, M.J., Co-precipitation of β-carotene and polyethylene glycol with compressed CO2 as an antisolvent: Effect of temperature and concentration (2008) Ind. Eng. Chem. Res., 47, pp. 3900-3906. , DOI: 10.1021/ie071326k | |
dc.description | Mattea, F., Martín, A., Cocero, M.J., Carotenoid processing with supercritical fluids (2009) J. Food Eng., 93, pp. 255-265. , DOI: 10.1016/j.jfoodeng.2009.01.030 | |
dc.description | Miguel, F., Martín, A., Mattea, F., Cocero, M.J., Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process (2008) Chem. Eng. Process, 47, pp. 1594-1602. , DOI: 10.1016/j.cep.2007.07.008 | |
dc.description | Nishikawa, D.O., Zague, V., Pinto, C.A.S., Vieira, R.P., Kaneko, T.M., Velasco, M.V.R., Baby, A.R., Avaliação da estabilidade de máscaras faciais peel-off contendo rutina (2007) Rev. Ciênc. Farm. Básica Apl., 28, pp. 227-232 | |
dc.description | Özen, G., Akbulut, M., Artik, N., (2009) Stability of Black Carrot Anthocyanins in the Turkish Delight (Lokum) during Storage, , (in press). DOI: 10.1111/j.1745-4530.2009.00412.x | |
dc.description | Pereira, C.G., Meireles, M.A.A., Evaluation of global yield, composition, antioxidant activity and cost of manufacturing of extracts from lemon verbena (Aloysia triphylla [L'Hérit.] Britton) and mango (Mangifera indica L.) leaves (2007) J. Food Process Eng., 30, pp. 150-173. , DOI: 10.1111/j.1745-4530.2007.00100.x | |
dc.description | Prado, J.M., Assis, A.R., Maróstica-Júnior, M.R., Meireles, M.A.A., Manufacturing cost of supercritical-extracted oils and carotenoids from Amazonian plants (2010) J. Food Process Eng., 33, pp. 348-369. , DOI: 10.1111/j.1745-4530.2008.00279.x | |
dc.description | Priamo, W.L., Cezaro, A.M., Ferreira, S.R.S., Oliveira, J.V., Precipitation and encapsulation of β-carotene in PHBV using carbon dioxide as anti-solvent (2010) J. Supercrit. Fluids, 54, pp. 103-109. , DOI: 10.1016/j.supflu.2010.02.013 | |
dc.description | Santos, D.T., Meireles, M.A.A., Jabuticaba as a source of functional pigments (2009) Phycog. Rev., 3, pp. 127-132 | |
dc.description | Santos, D.T., Meireles, M.A.A., Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends (2010) Open Chem. Eng. J., 4, pp. 42-50. , DOI: 10.2174/1874123101004020042 | |
dc.description | Santos, D.T., Veggi, P.C., Meireles, M.A.A., Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation (2010) J. Food Eng., 101, pp. 23-31 | |
dc.description | Seabra, I.J., Braga, M.E.M., Batista, M.T., De Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace (2010) J. Supercrit. Fluids, 54, pp. 145-152. , DOI: 10.1016/j.supflu.2010.05.001 | |
dc.description | Silva, G.F., Gamarra, F.M.C., Oliveira, A.L., Cabral, F.A., Extraction of bixin from annatto seeds using supercritical carbon dioxide (2008) Braz. J. Chem. Eng., 25, pp. 419-426. , DOI: 10.1590/S0104-66322008000200019 | |
dc.description | Suo, Q.L., He, W.Z., Huang, Y.C., Li, C.P., Hong, H.L., Li, Y.X., Zhu, M.D., Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization (2005) Powder Technol., 154, pp. 110-115. , DOI: 10.1016/j.powtec.2005.05.001 | |
dc.description | Tenório, A., Gordillo, M.D., Pereyra, C.M., Martínez De La Ossa, E.J., Relative importance of the operating conditions involved in the formation of nanoparticle of ampicillin by supercritical antisolvent precipitation (2007) Ind. Eng. Chem. Res., 46, pp. 114-123. , DOI: 10.1021/ie0606441 | |
dc.description | Tsutsumi, A., Ikeda, M., Chen, W., Iwatsuki, J., A nano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors (2003) Powder Technol., 138, pp. 211-215. , DOI: 10.1016/j.powtec.2003.09.001 | |
dc.description | Vatai, T., Skerget, M., Knez, Z., Extraction of phenolic compounds from elderberry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide (2009) J. Food Eng., 90, pp. 246-254. , DOI: 10.1016/j.jfoodeng.2008.06.028 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Food Process Engineering | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Micronization And Encapsulation Of Functional Pigments Using Supercritical Carbon Dioxide | |
dc.type | Artículos de revistas | |