Artículos de revistas
Human Nek7-interactor Rgs2 Is Required For Mitotic Spindle Organization
Registro en:
Cell Cycle. Landes Bioscience, v. 14, n. 4, p. 656 - 667, 2015.
15384101
10.4161/15384101.2014.994988
2-s2.0-84923529880
Autor
De Souza E.E.
Hehnly H.
Perez A.M.
Meirelles G.V.
Smetana J.H.C.
Doxsey S.
Kobarg J.
Institución
Resumen
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. 14 4 656 667 Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., Stuurman, N., Genes required for mitotic spindle assembly in Drosophila S2 cells (2007) Science, 5823, pp. 417-421. , http://dx.doi.org/10.1126/science.1141314 Uehara, R., Nozawa, R.S., Tomioka, A., Petry, S., Vale, R.D., Obuse, C., Goshima, G., The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells (2009) Proc Natl Acad Sci USA, 106, pp. 6998-7003. , http://dx.doi.org/10.1073/pnas.0901587106, PMID:19369198 Dumont, S., Mitchison, T.J., Force and length in the mitotic spindle (2009) Curr Biol, 17, pp. R749-R761. , http://dx.doi.org/10.1016/j.cub.2009.07.028 Hayward, D., Metz, J., Pellacani, C., Wakefield, J.G., Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation (2014) Dev Cell, 1, pp. 81-93. , http://dx.doi.org/10.1016/j.devcel.2013.12.001 Luders, J., Stearns, T., Microtubule-organizing centres: A re-evaluation (2007) Nat Rev Mol Cell Biol, 8, pp. 161-167. , http://dx.doi.org/10.1038/nrm2100, PMID:17245416 Willard, F.S., Kimple, R.J., Siderovski, D.P., Return of the GDI: The GoLoco motif in cell division (2004) Annu Rev Biochem, 73, pp. 925-951. , http://dx.doi.org/10.1146/annurev.biochem.73.011303.073756, PMID:15189163 Kotak, S., Gönczy, P., Mechanisms of spindle positioning: Cortical force generators in the limelight (2013) Curr Opin Cell Biol, 6, pp. 741-748. , http://dx.doi.org/10.1016/j.ceb.2013.07.008 Zheng, Z., Wan, Q., Liu, J., Zhu, H., Chu, X., Du, Q., Evidence for dynein and astral microtubule-mediated cortical release and transport of Gai/LGN/NuMA complex in mitotic cells (2013) Mol Biol Cell, 7, pp. 901-913. , http://dx.doi.org/10.1091/mbc.E12-06-0458 Musacchio, A., Salmon, E.D., The spindle-assembly checkpoint in space and time (2007) Nat Rev Mol Cell Biol, 8, pp. 379-393. , http://dx.doi.org/10.1038/nrm2163, PMID:17426725 Noatynska, A., Gotta, M., Meraldi, P., Mitotic spindle (DIS) orientation and DISease: Cause or consequence? (2012) J Cell Biol, 7, pp. 1025-1035. , http://dx.doi.org/10.1083/jcb.201209015 O'Connell, M.J., Krien, M.J., Hunter, T., Never say never. The NIMA-related protein kinases in mitotic control (2003) Trends Cell Biol, 5, pp. 221-228. , http://dx.doi.org/10.1016/S0962-8924(03)00056-4 O'Regan, L., Blot, J., Fry, A.M., Mitotic regulation by NIMA-related kinases (2007) Cell Div, 29, pp. 2-25 Fry, A.M., O'Regan, L., Sabir, S.R., Bayliss, R., Cell cycle regulation by the NEK family of protein kinases (2012) J Cell Sci, 125, pp. 4423-4433. , http://dx.doi.org/10.1242/jcs.111195, PMID:23132929 Meirelles, G.V., Perez, A.M., De Souza, E.E., Basei, F.L., Papa, P.F., Hanchuk, T.D.M., Cardoso, V.B., Kobarg, J., "Stop Ne (c)king around:" How systems biology can help to characterize the functions of NEK family kinases from cell cycle regulation to DNA damage response (2014) World J Biol Chem, 5 (2), pp. 141-160 Roig, J., Groen, A., Caldwell, J., Avruch, J., Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly (2005) Mol Biol Cell, 16, pp. 4827-4840. , http://dx.doi.org/10.1091/mbc.E05-04-0315, PMID:16079175 Yissachar, N., Salem, H., Tennenbaum, T., Motro, B., Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett, 27, pp. 6489-6495. , http://dx.doi.org/10.1016/j.febslet.2006.10.069 Kim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem Biophys Res Commun, 1, pp. 56-62. , http://dx.doi.org/10.1016/j.bbrc.2007.05.206 O'Regan, L., Fry, A.M., The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis (2009) Mol Cell Biol, 14, pp. 3975-3990. , http://dx.doi.org/10.1128/MCB.01867-08 Belham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J.A., Mitotic cascade of NIMA family kinases. Nercc1/NEK9 activates the NEK6 and NEK7 kinases (2003) J Biol Chem, 37, pp. 34897-34909. , http://dx.doi.org/10.1074/jbc.M303663200 Richards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., Anautoinhibitory tyrosine motif in the cell-cycle-regulated NEK7 kinase is released through binding of NEK9 (2009) Mol Cell, 4, pp. 560-570. , http://dx.doi.org/10.1016/j.molcel.2009.09.038 Quarmby, L.M., Mahjoub, M.R., Caught Nek-ing: Cilia and centrioles (2005) J Cell Sci, 118, pp. 5161-5169. , http://dx.doi.org/10.1242/jcs.02681, PMID:16280549 Kim, S., Rhee, K., NEK7 is essential for centriole duplication and centrosomal accumulation of pericentriolar material proteins in interphase cells (2011) J Cell Sci, 124, pp. 3760-3770. , http://dx.doi.org/10.1242/jcs.078089, PMID:22100915 Salem, H., Rachmin, I., Yissachar, N., Cohen, S., Amiel, A., Haffner, R., Lavi, L., Motro, B., Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy (2010) Oncogene, 28, pp. 4046-4057. , http://dx.doi.org/10.1038/onc.2010.162 De Souza, E.E., Meirelles, G.V., Godoy, B.B., Perez, A.M., Smetana, J.H., Doxsey, S.J., McComb, M.E., Kobarg, J., Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6 (2014) J Proteome Res, 13 (9), pp. 4074-4090. , http://dx.doi.org/10.1021/pr500437x, PMID:25093993 Abramow-NewerlyM, Roy, A.A., Nunn, C., Chidiac, P., RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins (2006) Cell Signal, 18, pp. 579-591. , http://dx.doi.org/10.1016/j.cellsig.2005.08.010, PMID:16226429 Bastin, G., Heximer, S.P., Rab family proteins regulate the endosomal trafficking and function of RGS4 (2013) J Biol Chem., 30, pp. 21836-21849. , http://dx.doi.org/10.1074/jbc.M113.466888 Siderovski, D.P., Hessel, A., Chung, S., Mak, T.W., Tyers, M., A new family of regulators of G-protein-coupled receptors? (1996) Curr Biol, 2, pp. 211-212. , http://dx.doi.org/10.1016/S0960-9822(02)00454-2 Keys, J.R., Greene, E.A., Koch, W.J., Eckhart, A.D., Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature (2002) Hypertension, 40, pp. 660-666. , http://dx.doi.org/10.1161/01.HYP.0000035397.73223.CE, PMID:12411459 Wilkie, T.M., Kinch, L., New roles for G a and RGS proteins: Communication continues despite pulling sisters apart (2005) Curr Biol, 15, pp. 843-854. , http://dx.doi.org/10.1016/j.cub.2005.10.008 Hewavitharana, T., Wedegaertner, P.B., Non-canonical signaling and localizations of heterotrimeric G proteins (2012) Cell Signal, 1, pp. 25-34. , http://dx.doi.org/10.1016/j.cellsig.2011.08.014 Lampson, M.A., Cheeseman, I.M., Sensing centromere tension: Aurora B and the regulation of kinetochore function (2011) Trends Cell Biol, 3, pp. 133-140. , http://dx.doi.org/10.1016/j.tcb.2010.10.007 Hochegger, H., H'Egarat, N., Pereira-Leal, J.B., Aurora at the pole and equator: Overlapping functions of Aurora kinases in the mitotic spindle (2013) Open Biol, 3, p. 120185. , http://dx.doi.org/10.1098/rsob.120185, PMID:23516109 Hehnly, H., Doxsey, S., Rab11 endosomes contribute to mitotic spindle organization and orientation (2014) Dev Cell, 28, pp. 497-507. , http://dx.doi.org/10.1016/j.devcel.2014.01.014, PMID:24561039 Cowley, D.O., Rivera-P'Erez, J.A., Schliekelman, M., He, Y.J., Oliver, T.G., Lu, L., O'Quinn, R., Van Dyke, T., Aurora-A kinase is essential for bipolar spindle formation and early development (2009) Mol Cell Biol, 4, pp. 1059-1071. , http://dx.doi.org/10.1128/MCB.01062-08 Nagai, T., Ikeda, M., Chiba, S., Kanno, S., Mizuno, K., Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase (2013) J Cell Sci, 19, pp. 4369-4380. , http://dx.doi.org/10.1242/jcs.127209 Zimmerman, W.C., Sillibourne, J., Rosa, J., Doxsey, S.J., Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry (2004) Mol Biol Cell, 8, pp. 3642-3657. , http://dx.doi.org/10.1091/mbc.E03-11-0796 Bornens, M., The centrosome in cells and organisms (2012) Science, 335, pp. 422-426. , http://dx.doi.org/10.1126/science.1209037, PMID:22282802 Bouissou, A., V'Erollet, C., De Forges, H., Haren, L., Bellä Iche, Y., Perez, F., Merdes, A., Raynaud-Messina, B., γ-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning (2014) EMBO J, 2, pp. 114-128. , http://dx.doi.org/10.1002/embj.201385967 Laan, L., Pavin, N., Husson, J., Romet-Lemonne, G., Van Duijn, M., Ĺopez, M.P., Vale, R.D., Dogterom, M., Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters (2012) Cell, 3, pp. 502-514. , http://dx.doi.org/10.1016/j.cell.2012.01.007 Delaval, B., Bright, A., Lawson, N.D., Doxsey, S., The cilia protein IFT88 is required for spindle orientation in mitosis (2011) Nat Cell Biol, 4, pp. 461-468. , http://dx.doi.org/10.1038/ncb2202 Lu, M.S., Johnston, C.A., Molecular pathways regulating mitotic spindle orientation in animal cells (2013) Development, 9, pp. 1843-1856. , http://dx.doi.org/10.1242/dev.087627 Cohen, S., Aizer, A., Shav-Tal, Y., Yanai, A., Motro, B., Nek7 kinase acceleratesmicrotubule dynamic instability (2013) Biochim Biophys Acta, 1833, pp. 1104-1113. , http://dx.doi.org/10.1016/j.bbamcr.2012.12.021, PMID:23313050 Welburn, J.P., Vleugel, M., Liu, D., Yates, J.R., Lampson, M.A., Fukagawa, T., Cheeseman, I.M., Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface (2010) Mol Cell, 38 (3), pp. 383-392. , http://dx.doi.org/10.1016/j.molcel.2010.02.034, PMID:20471944 Heo, K., Ha, S.H., Chae, Y.C., Lee, S., Oh, Y.S., Kim, Y.H., Kim, S.H., Ryu, S.H., Suh PG RGS2 promotes formation of neurites by stimulating microtubule polymerization (2006) Cell Signal, 12, pp. 2182-2192. , http://dx.doi.org/10.1016/j.cellsig.2006.05.006 Blumer, J.B., Kuriyama, R., Gettys, T.W., Lanier, S.M., The G-protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Gialpha3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells (2006) Eur J Cell Biol, 12, pp. 1233-1240. , http://dx.doi.org/10.1016/j.ejcb.2006.08.002 Woodard, G.E., Huang, N.-N., Cho, H., Miki, T., Tall, G.G., Kehrl, J.H., Ric-8A and Gi Alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle (2010) Mol Cell Biol, 14, pp. 3519-3530. , http://dx.doi.org/10.1128/MCB.00394-10 Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, Nek1, cause peliotropic effects including a progressive polycystic kidney disease in mice (2000) Proc Natl Acad Sci U S A, 97, pp. 217-221. , http://dx.doi.org/10.1073/pnas.97.1.217, PMID:10618398 Zalli, D., Bayliss, R., Fry, A.M., The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis (2012) Hum Mol Genet, 5, pp. 1155-1171. , http://dx.doi.org/10.1093/hmg/ddr544 Moniz, L., Dutt, P., Haider, N., Stambolic, V., Nek family of kinases in cell cycle, checkpoint control and cancer (2011) Cell Div, 1, p. 18. , http://dx.doi.org/10.1186/1747-1028-6-18 Kawamura, E., Fielding, A.B., Kannan, N., Balgi, A., Eaves, C.J., Roberge, M., Dedhar, S., Identification of novel small molecule inhibitors of centrosome clustering in cancer cells (2013) Oncotarget, 4, pp. 1763-1776. , PMID:24091544 Sanhaji, M., Ritter, A., Belsham, H.R., Friel, C.T., Roth, S., Louwen, F., Yuan, J., Polo-like kinase 1 regulates the stability of themitotic centromere-associated kinesin inmitosis (2014) Oncotarget, 5, pp. 3130-3144. , PMID:24931513 Carazzolle, M.F., De Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS - Integrated Interactome System: A web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools (2014) PLoS One, 9 (6), p. e100385. , http://dx.doi.org/10.1371/journal.pone.0100385 Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 11, pp. 2498-2504. , http://dx.doi.org/10.1101/gr.1239303 Thoma, C.R., Toso, A., Gutbrodt, K.L., Reggi, S.P., Frew, I.J., Schraml, P., Hergovich, A., Krek, W., VHL loss causes spindle misorientation and chromosome instability (2009) Nat Cell Biol, 8, pp. 994-1001. , http://dx.doi.org/10.1038/ncb1912