dc.creatorDe Souza E.E.
dc.creatorHehnly H.
dc.creatorPerez A.M.
dc.creatorMeirelles G.V.
dc.creatorSmetana J.H.C.
dc.creatorDoxsey S.
dc.creatorKobarg J.
dc.date2015
dc.date2015-06-25T12:53:23Z
dc.date2015-11-26T15:09:23Z
dc.date2015-06-25T12:53:23Z
dc.date2015-11-26T15:09:23Z
dc.date.accessioned2018-03-28T22:19:36Z
dc.date.available2018-03-28T22:19:36Z
dc.identifier
dc.identifierCell Cycle. Landes Bioscience, v. 14, n. 4, p. 656 - 667, 2015.
dc.identifier15384101
dc.identifier10.4161/15384101.2014.994988
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84923529880&partnerID=40&md5=a6c0891ce06098aa4b64ea15bf2dfc94
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85466
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85466
dc.identifier2-s2.0-84923529880
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257809
dc.descriptionThe mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.
dc.description14
dc.description4
dc.description656
dc.description667
dc.descriptionGoshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., Stuurman, N., Genes required for mitotic spindle assembly in Drosophila S2 cells (2007) Science, 5823, pp. 417-421. , http://dx.doi.org/10.1126/science.1141314
dc.descriptionUehara, R., Nozawa, R.S., Tomioka, A., Petry, S., Vale, R.D., Obuse, C., Goshima, G., The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells (2009) Proc Natl Acad Sci USA, 106, pp. 6998-7003. , http://dx.doi.org/10.1073/pnas.0901587106, PMID:19369198
dc.descriptionDumont, S., Mitchison, T.J., Force and length in the mitotic spindle (2009) Curr Biol, 17, pp. R749-R761. , http://dx.doi.org/10.1016/j.cub.2009.07.028
dc.descriptionHayward, D., Metz, J., Pellacani, C., Wakefield, J.G., Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation (2014) Dev Cell, 1, pp. 81-93. , http://dx.doi.org/10.1016/j.devcel.2013.12.001
dc.descriptionLuders, J., Stearns, T., Microtubule-organizing centres: A re-evaluation (2007) Nat Rev Mol Cell Biol, 8, pp. 161-167. , http://dx.doi.org/10.1038/nrm2100, PMID:17245416
dc.descriptionWillard, F.S., Kimple, R.J., Siderovski, D.P., Return of the GDI: The GoLoco motif in cell division (2004) Annu Rev Biochem, 73, pp. 925-951. , http://dx.doi.org/10.1146/annurev.biochem.73.011303.073756, PMID:15189163
dc.descriptionKotak, S., Gönczy, P., Mechanisms of spindle positioning: Cortical force generators in the limelight (2013) Curr Opin Cell Biol, 6, pp. 741-748. , http://dx.doi.org/10.1016/j.ceb.2013.07.008
dc.descriptionZheng, Z., Wan, Q., Liu, J., Zhu, H., Chu, X., Du, Q., Evidence for dynein and astral microtubule-mediated cortical release and transport of Gai/LGN/NuMA complex in mitotic cells (2013) Mol Biol Cell, 7, pp. 901-913. , http://dx.doi.org/10.1091/mbc.E12-06-0458
dc.descriptionMusacchio, A., Salmon, E.D., The spindle-assembly checkpoint in space and time (2007) Nat Rev Mol Cell Biol, 8, pp. 379-393. , http://dx.doi.org/10.1038/nrm2163, PMID:17426725
dc.descriptionNoatynska, A., Gotta, M., Meraldi, P., Mitotic spindle (DIS) orientation and DISease: Cause or consequence? (2012) J Cell Biol, 7, pp. 1025-1035. , http://dx.doi.org/10.1083/jcb.201209015
dc.descriptionO'Connell, M.J., Krien, M.J., Hunter, T., Never say never. The NIMA-related protein kinases in mitotic control (2003) Trends Cell Biol, 5, pp. 221-228. , http://dx.doi.org/10.1016/S0962-8924(03)00056-4
dc.descriptionO'Regan, L., Blot, J., Fry, A.M., Mitotic regulation by NIMA-related kinases (2007) Cell Div, 29, pp. 2-25
dc.descriptionFry, A.M., O'Regan, L., Sabir, S.R., Bayliss, R., Cell cycle regulation by the NEK family of protein kinases (2012) J Cell Sci, 125, pp. 4423-4433. , http://dx.doi.org/10.1242/jcs.111195, PMID:23132929
dc.descriptionMeirelles, G.V., Perez, A.M., De Souza, E.E., Basei, F.L., Papa, P.F., Hanchuk, T.D.M., Cardoso, V.B., Kobarg, J., "Stop Ne (c)king around:" How systems biology can help to characterize the functions of NEK family kinases from cell cycle regulation to DNA damage response (2014) World J Biol Chem, 5 (2), pp. 141-160
dc.descriptionRoig, J., Groen, A., Caldwell, J., Avruch, J., Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly (2005) Mol Biol Cell, 16, pp. 4827-4840. , http://dx.doi.org/10.1091/mbc.E05-04-0315, PMID:16079175
dc.descriptionYissachar, N., Salem, H., Tennenbaum, T., Motro, B., Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett, 27, pp. 6489-6495. , http://dx.doi.org/10.1016/j.febslet.2006.10.069
dc.descriptionKim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem Biophys Res Commun, 1, pp. 56-62. , http://dx.doi.org/10.1016/j.bbrc.2007.05.206
dc.descriptionO'Regan, L., Fry, A.M., The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis (2009) Mol Cell Biol, 14, pp. 3975-3990. , http://dx.doi.org/10.1128/MCB.01867-08
dc.descriptionBelham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J.A., Mitotic cascade of NIMA family kinases. Nercc1/NEK9 activates the NEK6 and NEK7 kinases (2003) J Biol Chem, 37, pp. 34897-34909. , http://dx.doi.org/10.1074/jbc.M303663200
dc.descriptionRichards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., Anautoinhibitory tyrosine motif in the cell-cycle-regulated NEK7 kinase is released through binding of NEK9 (2009) Mol Cell, 4, pp. 560-570. , http://dx.doi.org/10.1016/j.molcel.2009.09.038
dc.descriptionQuarmby, L.M., Mahjoub, M.R., Caught Nek-ing: Cilia and centrioles (2005) J Cell Sci, 118, pp. 5161-5169. , http://dx.doi.org/10.1242/jcs.02681, PMID:16280549
dc.descriptionKim, S., Rhee, K., NEK7 is essential for centriole duplication and centrosomal accumulation of pericentriolar material proteins in interphase cells (2011) J Cell Sci, 124, pp. 3760-3770. , http://dx.doi.org/10.1242/jcs.078089, PMID:22100915
dc.descriptionSalem, H., Rachmin, I., Yissachar, N., Cohen, S., Amiel, A., Haffner, R., Lavi, L., Motro, B., Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy (2010) Oncogene, 28, pp. 4046-4057. , http://dx.doi.org/10.1038/onc.2010.162
dc.descriptionDe Souza, E.E., Meirelles, G.V., Godoy, B.B., Perez, A.M., Smetana, J.H., Doxsey, S.J., McComb, M.E., Kobarg, J., Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6 (2014) J Proteome Res, 13 (9), pp. 4074-4090. , http://dx.doi.org/10.1021/pr500437x, PMID:25093993
dc.descriptionAbramow-NewerlyM, Roy, A.A., Nunn, C., Chidiac, P., RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins (2006) Cell Signal, 18, pp. 579-591. , http://dx.doi.org/10.1016/j.cellsig.2005.08.010, PMID:16226429
dc.descriptionBastin, G., Heximer, S.P., Rab family proteins regulate the endosomal trafficking and function of RGS4 (2013) J Biol Chem., 30, pp. 21836-21849. , http://dx.doi.org/10.1074/jbc.M113.466888
dc.descriptionSiderovski, D.P., Hessel, A., Chung, S., Mak, T.W., Tyers, M., A new family of regulators of G-protein-coupled receptors? (1996) Curr Biol, 2, pp. 211-212. , http://dx.doi.org/10.1016/S0960-9822(02)00454-2
dc.descriptionKeys, J.R., Greene, E.A., Koch, W.J., Eckhart, A.D., Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature (2002) Hypertension, 40, pp. 660-666. , http://dx.doi.org/10.1161/01.HYP.0000035397.73223.CE, PMID:12411459
dc.descriptionWilkie, T.M., Kinch, L., New roles for G a and RGS proteins: Communication continues despite pulling sisters apart (2005) Curr Biol, 15, pp. 843-854. , http://dx.doi.org/10.1016/j.cub.2005.10.008
dc.descriptionHewavitharana, T., Wedegaertner, P.B., Non-canonical signaling and localizations of heterotrimeric G proteins (2012) Cell Signal, 1, pp. 25-34. , http://dx.doi.org/10.1016/j.cellsig.2011.08.014
dc.descriptionLampson, M.A., Cheeseman, I.M., Sensing centromere tension: Aurora B and the regulation of kinetochore function (2011) Trends Cell Biol, 3, pp. 133-140. , http://dx.doi.org/10.1016/j.tcb.2010.10.007
dc.descriptionHochegger, H., H'Egarat, N., Pereira-Leal, J.B., Aurora at the pole and equator: Overlapping functions of Aurora kinases in the mitotic spindle (2013) Open Biol, 3, p. 120185. , http://dx.doi.org/10.1098/rsob.120185, PMID:23516109
dc.descriptionHehnly, H., Doxsey, S., Rab11 endosomes contribute to mitotic spindle organization and orientation (2014) Dev Cell, 28, pp. 497-507. , http://dx.doi.org/10.1016/j.devcel.2014.01.014, PMID:24561039
dc.descriptionCowley, D.O., Rivera-P'Erez, J.A., Schliekelman, M., He, Y.J., Oliver, T.G., Lu, L., O'Quinn, R., Van Dyke, T., Aurora-A kinase is essential for bipolar spindle formation and early development (2009) Mol Cell Biol, 4, pp. 1059-1071. , http://dx.doi.org/10.1128/MCB.01062-08
dc.descriptionNagai, T., Ikeda, M., Chiba, S., Kanno, S., Mizuno, K., Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase (2013) J Cell Sci, 19, pp. 4369-4380. , http://dx.doi.org/10.1242/jcs.127209
dc.descriptionZimmerman, W.C., Sillibourne, J., Rosa, J., Doxsey, S.J., Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry (2004) Mol Biol Cell, 8, pp. 3642-3657. , http://dx.doi.org/10.1091/mbc.E03-11-0796
dc.descriptionBornens, M., The centrosome in cells and organisms (2012) Science, 335, pp. 422-426. , http://dx.doi.org/10.1126/science.1209037, PMID:22282802
dc.descriptionBouissou, A., V'Erollet, C., De Forges, H., Haren, L., Bellä Iche, Y., Perez, F., Merdes, A., Raynaud-Messina, B., γ-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning (2014) EMBO J, 2, pp. 114-128. , http://dx.doi.org/10.1002/embj.201385967
dc.descriptionLaan, L., Pavin, N., Husson, J., Romet-Lemonne, G., Van Duijn, M., Ĺopez, M.P., Vale, R.D., Dogterom, M., Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters (2012) Cell, 3, pp. 502-514. , http://dx.doi.org/10.1016/j.cell.2012.01.007
dc.descriptionDelaval, B., Bright, A., Lawson, N.D., Doxsey, S., The cilia protein IFT88 is required for spindle orientation in mitosis (2011) Nat Cell Biol, 4, pp. 461-468. , http://dx.doi.org/10.1038/ncb2202
dc.descriptionLu, M.S., Johnston, C.A., Molecular pathways regulating mitotic spindle orientation in animal cells (2013) Development, 9, pp. 1843-1856. , http://dx.doi.org/10.1242/dev.087627
dc.descriptionCohen, S., Aizer, A., Shav-Tal, Y., Yanai, A., Motro, B., Nek7 kinase acceleratesmicrotubule dynamic instability (2013) Biochim Biophys Acta, 1833, pp. 1104-1113. , http://dx.doi.org/10.1016/j.bbamcr.2012.12.021, PMID:23313050
dc.descriptionWelburn, J.P., Vleugel, M., Liu, D., Yates, J.R., Lampson, M.A., Fukagawa, T., Cheeseman, I.M., Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface (2010) Mol Cell, 38 (3), pp. 383-392. , http://dx.doi.org/10.1016/j.molcel.2010.02.034, PMID:20471944
dc.descriptionHeo, K., Ha, S.H., Chae, Y.C., Lee, S., Oh, Y.S., Kim, Y.H., Kim, S.H., Ryu, S.H., Suh PG RGS2 promotes formation of neurites by stimulating microtubule polymerization (2006) Cell Signal, 12, pp. 2182-2192. , http://dx.doi.org/10.1016/j.cellsig.2006.05.006
dc.descriptionBlumer, J.B., Kuriyama, R., Gettys, T.W., Lanier, S.M., The G-protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Gialpha3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells (2006) Eur J Cell Biol, 12, pp. 1233-1240. , http://dx.doi.org/10.1016/j.ejcb.2006.08.002
dc.descriptionWoodard, G.E., Huang, N.-N., Cho, H., Miki, T., Tall, G.G., Kehrl, J.H., Ric-8A and Gi Alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle (2010) Mol Cell Biol, 14, pp. 3519-3530. , http://dx.doi.org/10.1128/MCB.00394-10
dc.descriptionUpadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, Nek1, cause peliotropic effects including a progressive polycystic kidney disease in mice (2000) Proc Natl Acad Sci U S A, 97, pp. 217-221. , http://dx.doi.org/10.1073/pnas.97.1.217, PMID:10618398
dc.descriptionZalli, D., Bayliss, R., Fry, A.M., The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis (2012) Hum Mol Genet, 5, pp. 1155-1171. , http://dx.doi.org/10.1093/hmg/ddr544
dc.descriptionMoniz, L., Dutt, P., Haider, N., Stambolic, V., Nek family of kinases in cell cycle, checkpoint control and cancer (2011) Cell Div, 1, p. 18. , http://dx.doi.org/10.1186/1747-1028-6-18
dc.descriptionKawamura, E., Fielding, A.B., Kannan, N., Balgi, A., Eaves, C.J., Roberge, M., Dedhar, S., Identification of novel small molecule inhibitors of centrosome clustering in cancer cells (2013) Oncotarget, 4, pp. 1763-1776. , PMID:24091544
dc.descriptionSanhaji, M., Ritter, A., Belsham, H.R., Friel, C.T., Roth, S., Louwen, F., Yuan, J., Polo-like kinase 1 regulates the stability of themitotic centromere-associated kinesin inmitosis (2014) Oncotarget, 5, pp. 3130-3144. , PMID:24931513
dc.descriptionCarazzolle, M.F., De Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS - Integrated Interactome System: A web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools (2014) PLoS One, 9 (6), p. e100385. , http://dx.doi.org/10.1371/journal.pone.0100385
dc.descriptionShannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 11, pp. 2498-2504. , http://dx.doi.org/10.1101/gr.1239303
dc.descriptionThoma, C.R., Toso, A., Gutbrodt, K.L., Reggi, S.P., Frew, I.J., Schraml, P., Hergovich, A., Krek, W., VHL loss causes spindle misorientation and chromosome instability (2009) Nat Cell Biol, 8, pp. 994-1001. , http://dx.doi.org/10.1038/ncb1912
dc.languageen
dc.publisherLandes Bioscience
dc.relationCell Cycle
dc.rightsfechado
dc.sourceScopus
dc.titleHuman Nek7-interactor Rgs2 Is Required For Mitotic Spindle Organization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución