Artículos de revistas
A Phase Field α-navier-stokes Vesicle-fluid Interaction Model: Existence And Uniqueness Of Solutions
Registro en:
Discrete And Continuous Dynamical Systems - Series B. Southwest Missouri State University, v. 20, n. 2, p. 397 - 422, 2015.
15313492
10.3934/dcdsb.2015.20.397
2-s2.0-84920746921
Autor
Entringer A.P.
Boldrini J.L.
Institución
Resumen
In this work we analyze a system of nonlinear evolution partial differential equations modeling the fluid-structure interaction associated to the dynamics of an elastic vesicle immersed in a moving incompressible viscous fluid. This system of equations couples an equation for a phase field variable, used to determine the position of vesicle membrane deformed by the action of the fluid, to the α-Navier- Stokes equations with an extra nonlinear interaction term. We prove global in time existence and uniqueness of solutions for this system in suitable functional spaces even in the three-dimensional case. 20 2 397 422 Adams, R.A., Fournier, J.J.F., (2003) Sobolev Spaces, , 2nd edition, Elsevier/Academic Press, Amsterdam Abkarian, M., Lartigue, C., Viallat, A., Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force (2002) Phys. Rev. Lett., 88, p. 068103 Beauncourt, J., Rioual, F., Sion, T., Biben, T., Misbah, C., Steady to unsteady dynamics of a vesicle in a flow (2004) Phys. Rev. E, 69, p. 011906 Biben, T., Kassner, K., Misbah, C., Phase field approach to three-dimensional vesicle dynamics (2005) Physical Rev. E, 72, p. 041921 Bjorland, C., Schonbek, M.E., On questions of decay and existence for the viscous Camassa-Holm equations (2008) Ann. Inst. H. Poincaré Anal Non Linéaire, 25, pp. 907-936 Çaʇlar, A., Convergence analysis of the Navier-Stokes alpha model (2010) Numerical Methods for Partial Differential Equations, 26, pp. 1154-1167 Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., A connection between Camassa-Holm equations and turbulent flows in channels and pipes (1999) Phys. Fluids, 11, pp. 2343-2353 Domaradzki, J.A., Holm, D.D., Navier-Stokes-alpha Model: LES equations with nonlinear dispersion (2001) Special LES Volume of ERCOFTAC Bulletin, Modern Simulations Strategies for Turbulent Flow, , (editor B. J. Geurts), Edwards Publising Du, Q., Li, M., Liu, C., Analysis of a phase field Navier-Stokes vesicle-fluid interation model (2007) Discrete Contin, Dyn. Syst. Ser. B, 8, pp. 539-556. , electronic Du, Q., Liu, C., Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes (2004) Journal of Computational Physics, 198, pp. 450-468 Du, Q., Liu, C., Ryhan, R., Wang, X., A phase field formulation of the Willmore problem (2005) Nonlinearity, 18, pp. 1249-1267 Du, Q., Liu, C., Ryham, R., Wang, X., Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation (2005) Commun. Pure Appl. Anal., 4, pp. 537-548 Du, Q., Liu, C., Ryham, R., Wang, X., Retrieving topological information for phase field models (2005) SIAM J. Appl. Math., 65, pp. 1913-1932. , electronic Du, Q., Liu, C., Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions (2006) Journal of Computational Physics, 212, pp. 757-777 Foias, C., Holm, D.D., Titi, E.S., The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory (2002) J. Dynam. and Differential Equations, 14, pp. 1-35 Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Phys. D, 152-153, pp. 505-519 Geurts, B.J., Holm, D.D., Regularization modeling for large eddy simulation (2003) Phys. Fluid, 15, pp. L13-L16 Geurts, B.J., Holm, D.D., Leray and LANS-α modeling of turbulent mixing (2006) J. Turbulence, 7, pp. 1-33. , electronic Guermond, L., Oden, J.T., Prudhomme, S., An interpretation of the Navier-Stokes alpha model as a frame-indifferent Leray regularization (2003) Phys. D, 177, pp. 23-30 Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments (1973) Z. Natur-Forsch. C, 28, pp. 693-703 Holm, D.D., Marsden, J.E., Ratiu, T.S., The Euler-Poincaré equations and semidirect products with applications to continuum theories (1998) Adv. Math., 137, pp. 1-81 Leray, J., Essay sur les mouvements plans d'une liquide visqueux que limitent des parois (1934) J. Math Pures Appl., 13, pp. 331-418 Leray, J., Sur les mouviments d'une liquide visqueux emplissant l'espace (1934) Acta Math., 63, pp. 193-248 Lipowsky, R., The morphology of lipid membranes (1995) Current Opinion in Structural Biology, 5, pp. 531-540 Liu, Y., Takahashi, T., Tucsnak, M., Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model (2012) J. Math. Fluid Mech., 14, pp. 177-195 McConnell, C.J., Carmichael, J.B., DeMont, M.E., Modeling blood ow in the aorta (1997) American Biology Teacher, 59, pp. 586-588 Ou-Yang, Z., Liu, J., Xie, Y., (1999) Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, , World Scientific, Singapore Seifert, U., Configurations of fluid membranes and Vesicles (1997) Advances In Physics, 46, pp. 13-137 Simon, J., Compact sets in the space Lp (0 T B) (1987) Ann. Mat. Pura Appl., 146 (4), pp. 65-96 Stalder, A.F., Frydrychowicz, A., Russe, M.F., Korvink, J.G., Hennig, J., Li, K., Markl, M., Assessment of ow instabilities in the healthy aorta using ow-sensitive MRI (2011) Journal of Magnetic Resonance Imaging, 33, pp. 839-846 Stein, D., Sabbah, H.N., Turbulent blood ow in the ascending aorta of humans with normal and diseased aortic valves, Circulation Research (1976) Journal of the American Heart Association, 39, pp. 58-65 Temam, R., (1977) Navier-Stokes Equations, Theory and Numerical Analysis, , North-Holland Publishing Company Wu, H., Xu, X., Strong solutions, global regularity and stability of a hydrodynamic system modeling vesicle and fluid interactions (2013) SIAM J. Math. Anal., 45, pp. 181-214