dc.creatorEntringer A.P.
dc.creatorBoldrini J.L.
dc.date2015
dc.date2015-06-25T12:53:21Z
dc.date2015-11-26T15:08:30Z
dc.date2015-06-25T12:53:21Z
dc.date2015-11-26T15:08:30Z
dc.date.accessioned2018-03-28T22:18:53Z
dc.date.available2018-03-28T22:18:53Z
dc.identifier
dc.identifierDiscrete And Continuous Dynamical Systems - Series B. Southwest Missouri State University, v. 20, n. 2, p. 397 - 422, 2015.
dc.identifier15313492
dc.identifier10.3934/dcdsb.2015.20.397
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84920746921&partnerID=40&md5=3f5152bd878ff7bcc4e24a3d3f5ab3b3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85458
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85458
dc.identifier2-s2.0-84920746921
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257676
dc.descriptionIn this work we analyze a system of nonlinear evolution partial differential equations modeling the fluid-structure interaction associated to the dynamics of an elastic vesicle immersed in a moving incompressible viscous fluid. This system of equations couples an equation for a phase field variable, used to determine the position of vesicle membrane deformed by the action of the fluid, to the α-Navier- Stokes equations with an extra nonlinear interaction term. We prove global in time existence and uniqueness of solutions for this system in suitable functional spaces even in the three-dimensional case.
dc.description20
dc.description2
dc.description397
dc.description422
dc.descriptionAdams, R.A., Fournier, J.J.F., (2003) Sobolev Spaces, , 2nd edition, Elsevier/Academic Press, Amsterdam
dc.descriptionAbkarian, M., Lartigue, C., Viallat, A., Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force (2002) Phys. Rev. Lett., 88, p. 068103
dc.descriptionBeauncourt, J., Rioual, F., Sion, T., Biben, T., Misbah, C., Steady to unsteady dynamics of a vesicle in a flow (2004) Phys. Rev. E, 69, p. 011906
dc.descriptionBiben, T., Kassner, K., Misbah, C., Phase field approach to three-dimensional vesicle dynamics (2005) Physical Rev. E, 72, p. 041921
dc.descriptionBjorland, C., Schonbek, M.E., On questions of decay and existence for the viscous Camassa-Holm equations (2008) Ann. Inst. H. Poincaré Anal Non Linéaire, 25, pp. 907-936
dc.descriptionÇaʇlar, A., Convergence analysis of the Navier-Stokes alpha model (2010) Numerical Methods for Partial Differential Equations, 26, pp. 1154-1167
dc.descriptionChen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., A connection between Camassa-Holm equations and turbulent flows in channels and pipes (1999) Phys. Fluids, 11, pp. 2343-2353
dc.descriptionDomaradzki, J.A., Holm, D.D., Navier-Stokes-alpha Model: LES equations with nonlinear dispersion (2001) Special LES Volume of ERCOFTAC Bulletin, Modern Simulations Strategies for Turbulent Flow, , (editor B. J. Geurts), Edwards Publising
dc.descriptionDu, Q., Li, M., Liu, C., Analysis of a phase field Navier-Stokes vesicle-fluid interation model (2007) Discrete Contin, Dyn. Syst. Ser. B, 8, pp. 539-556. , electronic
dc.descriptionDu, Q., Liu, C., Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes (2004) Journal of Computational Physics, 198, pp. 450-468
dc.descriptionDu, Q., Liu, C., Ryhan, R., Wang, X., A phase field formulation of the Willmore problem (2005) Nonlinearity, 18, pp. 1249-1267
dc.descriptionDu, Q., Liu, C., Ryham, R., Wang, X., Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation (2005) Commun. Pure Appl. Anal., 4, pp. 537-548
dc.descriptionDu, Q., Liu, C., Ryham, R., Wang, X., Retrieving topological information for phase field models (2005) SIAM J. Appl. Math., 65, pp. 1913-1932. , electronic
dc.descriptionDu, Q., Liu, C., Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions (2006) Journal of Computational Physics, 212, pp. 757-777
dc.descriptionFoias, C., Holm, D.D., Titi, E.S., The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory (2002) J. Dynam. and Differential Equations, 14, pp. 1-35
dc.descriptionFoias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Phys. D, 152-153, pp. 505-519
dc.descriptionGeurts, B.J., Holm, D.D., Regularization modeling for large eddy simulation (2003) Phys. Fluid, 15, pp. L13-L16
dc.descriptionGeurts, B.J., Holm, D.D., Leray and LANS-α modeling of turbulent mixing (2006) J. Turbulence, 7, pp. 1-33. , electronic
dc.descriptionGuermond, L., Oden, J.T., Prudhomme, S., An interpretation of the Navier-Stokes alpha model as a frame-indifferent Leray regularization (2003) Phys. D, 177, pp. 23-30
dc.descriptionHelfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments (1973) Z. Natur-Forsch. C, 28, pp. 693-703
dc.descriptionHolm, D.D., Marsden, J.E., Ratiu, T.S., The Euler-Poincaré equations and semidirect products with applications to continuum theories (1998) Adv. Math., 137, pp. 1-81
dc.descriptionLeray, J., Essay sur les mouvements plans d'une liquide visqueux que limitent des parois (1934) J. Math Pures Appl., 13, pp. 331-418
dc.descriptionLeray, J., Sur les mouviments d'une liquide visqueux emplissant l'espace (1934) Acta Math., 63, pp. 193-248
dc.descriptionLipowsky, R., The morphology of lipid membranes (1995) Current Opinion in Structural Biology, 5, pp. 531-540
dc.descriptionLiu, Y., Takahashi, T., Tucsnak, M., Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model (2012) J. Math. Fluid Mech., 14, pp. 177-195
dc.descriptionMcConnell, C.J., Carmichael, J.B., DeMont, M.E., Modeling blood ow in the aorta (1997) American Biology Teacher, 59, pp. 586-588
dc.descriptionOu-Yang, Z., Liu, J., Xie, Y., (1999) Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, , World Scientific, Singapore
dc.descriptionSeifert, U., Configurations of fluid membranes and Vesicles (1997) Advances In Physics, 46, pp. 13-137
dc.descriptionSimon, J., Compact sets in the space Lp (0
dc.descriptionT
dc.descriptionB) (1987) Ann. Mat. Pura Appl., 146 (4), pp. 65-96
dc.descriptionStalder, A.F., Frydrychowicz, A., Russe, M.F., Korvink, J.G., Hennig, J., Li, K., Markl, M., Assessment of ow instabilities in the healthy aorta using ow-sensitive MRI (2011) Journal of Magnetic Resonance Imaging, 33, pp. 839-846
dc.descriptionStein, D., Sabbah, H.N., Turbulent blood ow in the ascending aorta of humans with normal and diseased aortic valves, Circulation Research (1976) Journal of the American Heart Association, 39, pp. 58-65
dc.descriptionTemam, R., (1977) Navier-Stokes Equations, Theory and Numerical Analysis, , North-Holland Publishing Company
dc.descriptionWu, H., Xu, X., Strong solutions, global regularity and stability of a hydrodynamic system modeling vesicle and fluid interactions (2013) SIAM J. Math. Anal., 45, pp. 181-214
dc.languageen
dc.publisherSouthwest Missouri State University
dc.relationDiscrete and Continuous Dynamical Systems - Series B
dc.rightsfechado
dc.sourceScopus
dc.titleA Phase Field α-navier-stokes Vesicle-fluid Interaction Model: Existence And Uniqueness Of Solutions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución