dc.creator | Entringer A.P. | |
dc.creator | Boldrini J.L. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:53:21Z | |
dc.date | 2015-11-26T15:08:30Z | |
dc.date | 2015-06-25T12:53:21Z | |
dc.date | 2015-11-26T15:08:30Z | |
dc.date.accessioned | 2018-03-28T22:18:53Z | |
dc.date.available | 2018-03-28T22:18:53Z | |
dc.identifier | | |
dc.identifier | Discrete And Continuous Dynamical Systems - Series B. Southwest Missouri State University, v. 20, n. 2, p. 397 - 422, 2015. | |
dc.identifier | 15313492 | |
dc.identifier | 10.3934/dcdsb.2015.20.397 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84920746921&partnerID=40&md5=3f5152bd878ff7bcc4e24a3d3f5ab3b3 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85458 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85458 | |
dc.identifier | 2-s2.0-84920746921 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257676 | |
dc.description | In this work we analyze a system of nonlinear evolution partial differential equations modeling the fluid-structure interaction associated to the dynamics of an elastic vesicle immersed in a moving incompressible viscous fluid. This system of equations couples an equation for a phase field variable, used to determine the position of vesicle membrane deformed by the action of the fluid, to the α-Navier- Stokes equations with an extra nonlinear interaction term. We prove global in time existence and uniqueness of solutions for this system in suitable functional spaces even in the three-dimensional case. | |
dc.description | 20 | |
dc.description | 2 | |
dc.description | 397 | |
dc.description | 422 | |
dc.description | Adams, R.A., Fournier, J.J.F., (2003) Sobolev Spaces, , 2nd edition, Elsevier/Academic Press, Amsterdam | |
dc.description | Abkarian, M., Lartigue, C., Viallat, A., Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force (2002) Phys. Rev. Lett., 88, p. 068103 | |
dc.description | Beauncourt, J., Rioual, F., Sion, T., Biben, T., Misbah, C., Steady to unsteady dynamics of a vesicle in a flow (2004) Phys. Rev. E, 69, p. 011906 | |
dc.description | Biben, T., Kassner, K., Misbah, C., Phase field approach to three-dimensional vesicle dynamics (2005) Physical Rev. E, 72, p. 041921 | |
dc.description | Bjorland, C., Schonbek, M.E., On questions of decay and existence for the viscous Camassa-Holm equations (2008) Ann. Inst. H. Poincaré Anal Non Linéaire, 25, pp. 907-936 | |
dc.description | Çaʇlar, A., Convergence analysis of the Navier-Stokes alpha model (2010) Numerical Methods for Partial Differential Equations, 26, pp. 1154-1167 | |
dc.description | Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., A connection between Camassa-Holm equations and turbulent flows in channels and pipes (1999) Phys. Fluids, 11, pp. 2343-2353 | |
dc.description | Domaradzki, J.A., Holm, D.D., Navier-Stokes-alpha Model: LES equations with nonlinear dispersion (2001) Special LES Volume of ERCOFTAC Bulletin, Modern Simulations Strategies for Turbulent Flow, , (editor B. J. Geurts), Edwards Publising | |
dc.description | Du, Q., Li, M., Liu, C., Analysis of a phase field Navier-Stokes vesicle-fluid interation model (2007) Discrete Contin, Dyn. Syst. Ser. B, 8, pp. 539-556. , electronic | |
dc.description | Du, Q., Liu, C., Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes (2004) Journal of Computational Physics, 198, pp. 450-468 | |
dc.description | Du, Q., Liu, C., Ryhan, R., Wang, X., A phase field formulation of the Willmore problem (2005) Nonlinearity, 18, pp. 1249-1267 | |
dc.description | Du, Q., Liu, C., Ryham, R., Wang, X., Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation (2005) Commun. Pure Appl. Anal., 4, pp. 537-548 | |
dc.description | Du, Q., Liu, C., Ryham, R., Wang, X., Retrieving topological information for phase field models (2005) SIAM J. Appl. Math., 65, pp. 1913-1932. , electronic | |
dc.description | Du, Q., Liu, C., Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions (2006) Journal of Computational Physics, 212, pp. 757-777 | |
dc.description | Foias, C., Holm, D.D., Titi, E.S., The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory (2002) J. Dynam. and Differential Equations, 14, pp. 1-35 | |
dc.description | Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Phys. D, 152-153, pp. 505-519 | |
dc.description | Geurts, B.J., Holm, D.D., Regularization modeling for large eddy simulation (2003) Phys. Fluid, 15, pp. L13-L16 | |
dc.description | Geurts, B.J., Holm, D.D., Leray and LANS-α modeling of turbulent mixing (2006) J. Turbulence, 7, pp. 1-33. , electronic | |
dc.description | Guermond, L., Oden, J.T., Prudhomme, S., An interpretation of the Navier-Stokes alpha model as a frame-indifferent Leray regularization (2003) Phys. D, 177, pp. 23-30 | |
dc.description | Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments (1973) Z. Natur-Forsch. C, 28, pp. 693-703 | |
dc.description | Holm, D.D., Marsden, J.E., Ratiu, T.S., The Euler-Poincaré equations and semidirect products with applications to continuum theories (1998) Adv. Math., 137, pp. 1-81 | |
dc.description | Leray, J., Essay sur les mouvements plans d'une liquide visqueux que limitent des parois (1934) J. Math Pures Appl., 13, pp. 331-418 | |
dc.description | Leray, J., Sur les mouviments d'une liquide visqueux emplissant l'espace (1934) Acta Math., 63, pp. 193-248 | |
dc.description | Lipowsky, R., The morphology of lipid membranes (1995) Current Opinion in Structural Biology, 5, pp. 531-540 | |
dc.description | Liu, Y., Takahashi, T., Tucsnak, M., Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model (2012) J. Math. Fluid Mech., 14, pp. 177-195 | |
dc.description | McConnell, C.J., Carmichael, J.B., DeMont, M.E., Modeling blood ow in the aorta (1997) American Biology Teacher, 59, pp. 586-588 | |
dc.description | Ou-Yang, Z., Liu, J., Xie, Y., (1999) Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, , World Scientific, Singapore | |
dc.description | Seifert, U., Configurations of fluid membranes and Vesicles (1997) Advances In Physics, 46, pp. 13-137 | |
dc.description | Simon, J., Compact sets in the space Lp (0 | |
dc.description | T | |
dc.description | B) (1987) Ann. Mat. Pura Appl., 146 (4), pp. 65-96 | |
dc.description | Stalder, A.F., Frydrychowicz, A., Russe, M.F., Korvink, J.G., Hennig, J., Li, K., Markl, M., Assessment of ow instabilities in the healthy aorta using ow-sensitive MRI (2011) Journal of Magnetic Resonance Imaging, 33, pp. 839-846 | |
dc.description | Stein, D., Sabbah, H.N., Turbulent blood ow in the ascending aorta of humans with normal and diseased aortic valves, Circulation Research (1976) Journal of the American Heart Association, 39, pp. 58-65 | |
dc.description | Temam, R., (1977) Navier-Stokes Equations, Theory and Numerical Analysis, , North-Holland Publishing Company | |
dc.description | Wu, H., Xu, X., Strong solutions, global regularity and stability of a hydrodynamic system modeling vesicle and fluid interactions (2013) SIAM J. Math. Anal., 45, pp. 181-214 | |
dc.language | en | |
dc.publisher | Southwest Missouri State University | |
dc.relation | Discrete and Continuous Dynamical Systems - Series B | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Phase Field α-navier-stokes Vesicle-fluid Interaction Model: Existence And Uniqueness Of Solutions | |
dc.type | Artículos de revistas | |