Artículos de revistas
Cationic Liposomes As Non-viral Vector For Rna Delivery In Cancer Immunotherapy
Registro en:
Recent Patents On Drug Delivery And Formulation. , v. 7, n. 2, p. 99 - 110, 2013.
18722113
10.2174/18722113113079990010
2-s2.0-84880172424
Autor
Vitor M.T.
Bergami-Santos P.C.
Barbuto J.A.M.
de la Torre L.G.
Institución
Resumen
This review presents the current status in the use of liposomes as non-viral vector for nucleic acid delivery in cancer immunotherapy. Currently, cancer treatment uses surgery, radiotherapy and/or chemotherapy. The search for new strategies to improve the efficiency of conventional treatments is a challenge, and biological therapy has emerged as a promising technique. Immunotherapy is a branch of biological therapy that uses the body's immune system to detect and destroy cancer cells. One immunotherapy approach is the activation of T lymphocytes from cancer patients by dendritic cells (DCs) loaded with tumor antigens. Among different antigens, mRNA coding the tumor antigens is advantageous due to its capability to be amplified from small amounts of tumor tissue, its safety because it is easily degraded without integrating into the host genome, and it does not need to cross the nuclear barrier to exert its biological activity. Nanotechnology is an approach to deliver tumor antigens into DCs. Specially; we review the use of nanoliposomes in the field of cancer therapy because cationic liposomes can be used as non-viral vectors for mRNA delivery. Aside from the promise of liposomes, the development of scalable processes and facilities to the use this individualized therapy is still a challenge. Thus, we also present the recent techniques used for liposome production. In this context, the integration between technological knowledge in the production of cationic liposomes and immunotherapy using mRNA may contribute to the development of new strategies for cancer therapy. © 2013 Bentham Science Publishers. 7 2 99 110 Misra, R., Acharya, S., Sahoo, S.K., Cancer nanotechnology: Application of nanotechnology in cancer therapy (2010) Drug Discov Today, 15 (19-20), pp. 842-850 Susa, M., Milane, L., Amiji, M., Hornicek, F., Duan, Z., Nanoparticles: A promising modality in the treatment of sarcomas (2011) Pharm Res, 28 (2), pp. 260-272 Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids (1965) J Mol Biol, 13 (1), pp. 238-252 Sheng, W.Y., Huang, L., Cancer immunotherapy and nanomedicine (2011) Pharm Res, 28 (2), pp. 200-214 Sullenger, B.A., Gilboa, E., Emerging clinical applications of RNA (2002) Nature, 418 (6894), pp. 252-258 Trevisan, J.E., Cavalcanti, L.P., Oliveira, C.L.P., de la Torre, L.G., Santana, M.H.A., Technological aspects of scalable processes for the production of functional liposomes for gene therapy (2011) Non-Viral Gene Therapy. In Tech, pp. 267-292. , In: Yuan X-b, Eds Wood, G.W., (2002) Composition and Method of Cancer Antigen Immunotherapy, , US6406699 Rubiolo, C., (2011) Dendritic Cells, , US20110097346 Maeda, H., Greish, K., (2005) Antitumor Agent and Process For Producing the Same, , US20050208136 Tomalia, D.A., Pulgam, V.R., Swanson, D.R., Huang, B., (2011) Janus Dendrimers and Dendrons, , US7977452 Klimash, J.W., Brothers, H.M., Swanson, D.R., Yin, R., Spindler, R., Tomalia, D.A., Hsu, Y., Cheng, R.C., (2000) Disulfidecontaining Dendritic Polymers, , US6020457 Kim, J.U., Choi, H.Y., (2010) X-ray System For Dental Diagnosis and Oral Cancer Therapy Based On Nano-material and Method Thereof, , US7771117 Hirsch, A., Sagman, U., Wilson, S.R., Rosenblum, M.G., Wilson, L.J., (2008) Use of Carbon Nanotube For Drug Delivery, , US20080193490 Carol, M.P., Heanue, J.A., (2009) Delivery System For Radiation Therapy, , US20090154646 Zhukov, T.A., Ostapenko, S., Sutphen, R., Lancaster, J., Sellers, T.A., Zhang, J.Z., (2006) Luminescence Characterization of Quantum Dots Conjugated With Biomarkers For Early Cancer Detection, , US20060003465 Bao, G., Nie, S., Nitin, N., la Conte, L., (2005) Multifunctional Magnetic Nanoparticle Probes For Intracellular Molecular Imaging and Monitoring, , US20050130167 Holland, J.W., Madden, T.D., Cullis, P.R., (1999) Bilayer Stabilizing Components and Their Use In Forming Programmable Fusogenic Liposomes, , US5885613 Duzgunes, N., Simoes, S., Slepushkin, V., de Lima, M.C.P., (2001) Nonligand Polypeptide and Liposome Complexes As Intracellular Delivery Vehicles, , US6245427 Chancellor, M.B., Fraser, M.O., Chuang, Y.-C., de Groat, W.C., Huang, L., Yoshimura, N., (2006) Application of Lipid Vehicles and Use For Drug Delivery, , US7063860 Rahman, A., (1990) Liposome-encapsulated Vinca Alkaloids and Their Use In Combatting Tumors, , US4952408 Graham, R., Barbisin, M., (2006) Cationic Liposomes and Methods of Use, , US20060159738 Mezei, M., Nugent, F.J., (1984) Method of Encapsulating Biologically Active Materials In Multilamellar Lipid Vesicles (MLV), , US4485054 Kung, V.T., Canova-Davis, E., (1986) Liposome Immunoassay Reagent and Method, , US4622294 Tournier, H., Schneider, M., Guillot, C., (1999) Liposomes With Enhanced Entrapment Capacity and Their Use In Imaging, , US5980937 Ho, J.-A., Lin, Y.-C., (2011) Device For Preparation of Liposomes and Method Thereof, , US20110163468 Barenholz, Y., Gabizon, A., (1990) Liposome/doxorubicin Composition and Method, , US4898735 Rahman, A., (2002) Method of Administering Liposomal Encapsulated Taxane, , US6461637 Rahman, A., Rafaeloff, R., Husain, S.R., (1995) Liposome Encapsulated Taxol and A Method of Using the Same, , US5424073 Iga, K., Hamaguchi, N., Ogawa, Y., (1991) Liposome Composition and Production Thereof, , US5000959 Esuvaranathan, K., Mahendran, R., Lawrencia, C., (2010) Methods and Compositions For Delivery of Pharmaceutical Agents, , US7709457 Santana, M.H.A., Rosada, R.S., Castelo, A.A.M.C., Silva, C.L., de la Torre, L.G., (2009) Ternary Liposomal Composition Containing a Polynucleotide, , WO2009073941 Stewart, B.W., Kleihues, P., (2003) World Cancer Report, , IARC Press: Lyon, France (2011) Are the number of cancer cases increasing or decreasing in the world?, , http://www.who.int/features/qa/15/en/index.html, (WHO) WHO Available at, Accessed on: July 16 Morgan, G., Ward, R., Barton, M., The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies (2004) Clin Oncol, 16 (8), pp. 549-560 Pastor, F., Kolonias, D., Giangrande, P.H., Gilboa, E., Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay (2010) Nature, 465 (7295), pp. 227-230 Folkman, J., Tumor angiogenesis: Therapeutic implications (1971) N Engl J Med, 285 (21), pp. 1182-1186 Pang, R.W., Poon, R.T., Clinical implications of angiogenesis in cancers (2006) Vasc Health Risk Manag, 2 (2), pp. 97-108 Bertino, J.R., Hait, W., Princípios do tratamento do câncer (2005) Cecil, Tratado De Medicina Interna. Rio De Janeiro, pp. 1316-1330. , In: Ausiello D, Goldman L, Eds., Brazil: Elsevier (2011) Biological Therapy, , http://www.cancer.gov/cancertopics/treatment/biologicaltherapy, (NCI) NCI, Available at, Accessed on: August 28 Hanahan, D., Weinberg, R.A., Hallmarks of Cancer: The Next Generation (2011) Cell, 144 (5), pp. 646-674 Coley, W.B., The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus) (1910) Proc R Soc Med, 3, pp. 1-48 (2007) Understanding the Immune System - How it Works, pp. 1-54. , National Institute of Allergy and Infectious Diseases, U.S. Departament of Healthy and Human Services National Institutes of Health, Eds. USA: NIH Publication Prestwich, R.J., Errington, F., Hatfield, P., Merrick, A.E., Ilett, E.J., Selby, P.J., The immune system - is it relevant to cancer development, progression and treatment? (2008) Clin Oncol, 20 (2), pp. 101-112 Pulendran, B., Banchereau, J., Maraskovsky, E., Maliszewski, C., Modulating the immune response with dendritic cells and their growth factors (2001) Trends Immunol, 22 (1), pp. 41-47 Markovic, S.N., Celis, E., Antibodies and vaccines as novel cancer therapeutics (2006) Novel Anticancer Agents, pp. 207-221. , In: Alex AA, John KB, Eds., Burlington: Academic Press Scanlan, M.J., Gure, A.O., Jungbluth, A.A., Old, L.J., Chen, Y.-T., Cancer/ testis antigens: An expanding family of targets for cancer immunotherapy (2002) Immunol Rev, 188 (1), pp. 22-32 Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D., Cancer immunoediting: From immunosurveillance to tumor escape (2002) Nat Immunol, 3 (11), pp. 991-998 Steinman, R.M., Dendritic cells: Understanding immunogenicity (2007) Eur J Immunol, 37 (S1), pp. S53-S60 Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity (1998) Nature, 392 (6673), pp. 245-252 Baleeiro, R.B., Anselmo, L.B., Soares, F.A., Pinto, C.A.L., Ramos, O., Gross, J.L., High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-α in lung cancer (2008) Ancer Immunol Immunother, 57 (9), pp. 1335-1345 Sallusto, F., Lanzavecchia, A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha (1994) J Exp Med, 179 (4), pp. 1109-1118 Barbuto, J.A.M., Ensina, L.F.C., Neves, A.R., Bergami-Santos, P.C., Leite, K.R.M., Marques, R., Dendritic cell-tumor cell hybrid vaccination for metastatic cancer (2004) Cancer Immunol Immunother, 53 (12), pp. 1111-1118 Gilboa, E., Vieweg, J., Cancer immunotherapy with mRNAtransfected dendritic cells (2004) Immunol Rev, 199, pp. 251-263 Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Immunobiology of dendritic cells (2000) Annu Rev Immunol, 18, pp. 767-811 Ashley, D.M., Faiola, B., Nair, S., Hale, L.P., Bigner, D.D., Gilboa, E., Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors (1997) J Exp Med, 186 (7), pp. 1177-1182 Boczkowski, D., Nair, S.K., Nam, J.H., Lyerly, H.K., Gilboa, E., Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells (2000) Cancer Res, 60 (4), pp. 1028-1034 Boczkowski, D., Nair, S.K., Snyder, D., Gilboa, E., Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo (1996) J Exp Med, 184 (2), pp. 465-472 Granstein, R.D., Ding, W., Ozawa, H., Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA (2000) J Invest Dermatol, 114 (4), pp. 632-636 Koido, S., Kashiwaba, M., Chen, D., Gendler, S., Kufe, D., Gong, J., Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA (2000) J Immunol, 165 (10), pp. 5713-5719 Nair, S.K., Heiser, A., Boczkowski, D., Majumdar, A., Naoe, M., Lebkowski, J.S., Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells (2000) Nat Med, 6 (9), pp. 1011-1017 Zhang, W., He, L., Yuan, Z., Xie, Z., Wang, J., Hamada, H., Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin (1999) Hum Gene Ther, 10 (7), pp. 1151-1161 Heiser, A., Dahm, P., Yancey, D.R., Maurice, M.A., Boczkowski, D., Nair, S.K., Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro (2000) J Immunol, 164 (10), pp. 5508-5514 Heiser, A., Maurice, M.A., Yancey, D.R., Coleman, D.M., Dahm, P., Vieweg, J., Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors (2001) Cancer Res, 61 (8), pp. 3388-3393 Heiser, A., Maurice, M.A., Yancey, D.R., Wu, N.Z., Dahm, P., Pruitt, S.K., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA (2001) J Immunol, 166 (5), pp. 2953-2960 Nair, S.K., Boczkowski, D., Morse, M., Cumming, R.I., Lyerly, H.K., Gilboa, E., Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA (1998) Nat Biotech, 16 (4), pp. 364-369 Sæbøe-Larssen, S., Fossberg, E., Gaudernack, G., mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT) (2002) J Immunol Methods, 259 (1-2), pp. 191-203 Strobel, I., Berchtold, S., Götze, A., Schulze, U., Schuler, G., Steinkasserer, A., Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes (2000) Gene Ther, 7 (23), pp. 2028-2035 Su, Z., Peluso, M.V., Raffegerst, S.H., Schendel, D.J., Roskrow, M.A., The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease (2001) Eur J Immunol, 31 (3), pp. 947-958 Thornburg, C., Boczkowski, D., Gilboa, E., Nair, S.K., Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: Implications for cervical cancer immunotherapy (2000) J Immunother, 23 (4), pp. 412-418 van Tendeloo, V.F.I., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., van Broeckhoven, C., Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells (2001) Blood, 98 (1), pp. 49-56 Weissman, D., Ni, H., Scales, D., Dude, A., Capodici, J., McGibney, K., HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response (2000) J Immunol, 165 (8), pp. 4710-4717 Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Autologous dendritic cells transfected with prostatespecific antigen RNA stimulate CTL responses against metastatic prostate tumors (2002) J Clin Invest, 109 (3), pp. 409-417 Bawa, R., Bawa, S.R., Maebius, S.B., Flynn, T., Wei, C., Protecting new ideas and inventions in nanomedicine with patents (2005) Nanomed Nanotechnol Biol Med, 1 (2), pp. 150-158 Moghimi, S.M., Hunter, A.C., Murray, J.C., Nanomedicine: Current status and future prospects (2005) FASEB Journal: Official Publication of the Federation of American Societies For Experimental Biology, 19 (3), pp. 311-330 Ferrari, M., Cancer nanotechnology: Opportunities and challenges (2005) Nat Rev Cancer, 5 (3), pp. 161-171 Ferrari, M., Nanovector therapeutics (2005) Curr Opin Chem Biol, 9 (4), pp. 343-346 Fredika, R., Mauro, F., Introduction and rationale for nanotechnology in cancer therapy (2006) Nanotechnology For Cancer Therapy, pp. 3-10. , In: Eds, CRC Press Shigeru, K., Mitsuru, H., Yuriko, H., Pharmacokinetics of Nanocarrier-Mediated Drug and Gene Delivery (2006) Nanotechnology For Cancer Therapy, pp. 43-58. , In: Amiji MM, Eds., CRC Press Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the bloodbrain barrier (1999) J Pharmacol Exp Ther, 291 (3), pp. 1017-1022 Furumoto, K., Nagayama, S., Ogawara, K.-I., Takakura, Y., Hashida, M., Higaki, K., Hepatic uptake of negatively charged particles in rats: Possible involvement of serum proteins in recognition by scavenger receptor (2004) J Controlled Release, 97 (1), pp. 133-141 Oberdürster, G., Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London. Series A: Mathematical (2000) Physical and Engineering Sciences, 358 (1775), pp. 2719-2740 Ogawara, K.-I., Yoshida, M., Higaki, K., Toshikiro, K., Shiraishi, K., Nishikawa, M., Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution (1999) J Controlled Release, 59 (1), pp. 15-22 Ogawara, K.-I., Yoshida, M., Kubo, J.-I., Nishikawa, M., Takakura, Y., Hashida, M., Mechanisms of hepatic disposition of polystyrene microspheres in rats: Effects of serum depend on the sizes of microspheres (1999) J Controlled Release, 61 (3), pp. 241-250 Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel (2005) Br J Cancer, 92 (7), pp. 1240-1246 Davis, M.E., Chen, Z., Shin, D.M., Nanoparticle therapeutics: An emerging treatment modality for cancer (2008) Nature Reviews Drug Discovery, 7, pp. 771-782 Brigger, I., Dubernet, C., Couvreur, P., Nanoparticles in cancer therapy and diagnosis (2002) Adv Drug Deliv Rev, 54 (5), pp. 631-651 Randall, M., Active Targeting Strategies in Cancer with a Focus on Potential Nanotechnology Applications (2006) Nanotechnology For Cancer Therapy, pp. 19-42. , In: Amiji MM, Eds., CRC Press Duncan, R., Nanomedicine gets clinical (2005) Mater Today, 8 (8 SUPPL.), pp. 16-17 Shimab, S.A.K., Anwar, S., Jain, P., Nano structure based drug delivery system: An approach to treat cancer (2012) Int J Drug Develop Res, 4 (2), pp. 394-407 Antunes, F.E., Marques, E.F., Miguel, M.G., Lindman, B., Polymervesicle association (2009) Adv Colloid Interface Sci, 147-148, pp. 18-35 Filipe, E.J.M., Quando as moléculas se auto-organizam: Micelas e outras estruturas supremoleculares (1996) Revista De Cultura Científica, 18, pp. 25-38 Park, J.W., Benz, C.C., Martin, F.J., Future directions of liposome-and immunoliposome-based cancer therapeutics (2004) Semin Oncol, 31 (13 SUPPL.), pp. 196-205 Evans, D.F., Wennerström, H., (1999) The Colloidal Domain - Where Physics, Chemistry, Biology, and Technology Meet, , 2nd ed. Wiley-vch: USA Israelachvili, J.N., (1992) Intermolecular and Surface Forces, , 2nd ed. Academic Press: California, USA Lorenz, R.M., Edgar, J.S., Jeffries, G.D.M., Zhao, Y., McGloin, D., Chiu, D.T., Vortex-trap-induced fusion of femtoliter-volume aqueous droplets (2006) Anal Chem, 79 (1), pp. 224-228 Yagi, K., (1986) Medical Application of Liposomes, , Japan Scientific Societies Press Hiemenz, P.C., Rajagopalan, R., (1997) Principles of Colloid and Surface Chemistry, , third edition, revised and expanded. Taylor & Francis Lasic, D.D., (1993) Liposomes: From Physics to Applications, , Elsevier Science Publishers B.V.: Amsterdam Portney, N., Ozkan, M., Nano-oncology: Drug delivery, imaging, and sensing (2006) Anal Bioanal Chem, 384 (3), pp. 620-630 Forssen, E.A., Tokes, Z.A., Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity (1981) Proc Natl Acad Sci USA, 78 (3), pp. 1873-1877 Robert, N.J., Vogel, C.L., Henderson, I.C., Sparano, J.A., Moore, M.R., Silverman, P., The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer (2004) Semin Oncol, 31 (13 SUPPL.), pp. 106-146 Straubinger, R.M., Lopez, N.G., Debs, R.J., Hong, K., Papahadjopoulos, D., Liposome-based therapy of human ovarian cancer: Parameters determining potency of negatively charged and antibody-targeted liposomes (1988) Cancer Res, 48 (18), pp. 5237-5245 Campbell, R.B., Balasubramanian, S.V., Straubinger, R.M., Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes (2001) J Pharm Sci, 90 (8), pp. 1091-1105 Rowinsky, E.K., Donehower, R.C., Paclitaxel (Taxol) (1995) N Engl J Med, 333 (1), pp. 1004-1014 Dye, D., Watkins, J., Suspected anaphylactic reaction to Cremophor EL (1980) Br Med J, 280 (6228), p. 1353 Lorenz, W., Reimann, H.J., Schmal, A., Dormann, P., Schwarz, B., Neugebauer, E., Histamine release in dogs by Cremophor E1 and its derivatives: Oxethylated oleic acid is the most effective constituent (1977) Agents Actions, 7 (1), pp. 63-67 Yoshizawa, Y., Kono, Y., Ogawara, K.-I., Kimura, T., Higaki, K., PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy (2011) Int J Pharm, 412 (1-2), pp. 132-141 Sapra, P., Allen, T.M., Ligand-targeted liposomal anticancer drugs (2003) Prog Lipid Res, 42 (5), pp. 439-462 Sorgi, F.L., Huang, L., Large scale production of DC-Chol cationic liposomes by microfluidization (1996) Int J Pharm, 144 (2), pp. 131-139 New, R.R.C., (1994) Liposomes: A Practical Approach, , IRL Press: Oxford University Press Torre, L.G., Carneiro, A.L., Rosada, R.S., Silva, C.L., Santana, M.H.A., A mathematical model describing the kinetic of cationic liposome production from dried lipid films adsorbed in a multitubular system (2007) Braz J Chem Eng, 24, pp. 477-486 Barnadas-Rodriguez, R., Sabes, M., Factors involved in the production of liposomes with a high-pressure homogenizer (2001) Int J Pharm, 213 (1-2), pp. 175-186 Jahn, A., Vreeland, W.N., de Voe, D.L., Locascio, L.E., Gaitan, M., Microfluidic Directed Formation of Liposomes of Controlled Size (2007) Langmuir, 23 (11), pp. 6289-6293 Su, Z., Dannull, J., Heiser, A., Yancey, D., Pruitt, S., Madden, J., Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor rna-transfected dendritic cells (2003) Cancer Res, 63 (9), pp. 2127-2133 Bonehill, A., van Nuffel, A.M., Corthals, J., Tuyaerts, S., Heirman, C., Francois, V., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients (2009) Clin Cancer Res, 15 (10), pp. 3366-3375 Grunebach, F., Muller, M.R., Nencioni, A., Brossart, P., Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes (2003) Gene Ther, 10 (5), pp. 367-374 Milazzo, C., Reichardt, V.L., Müller, M.R., Grünebach, F., Brossart, P., Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA (2003) Blood, 101 (3), pp. 977-982 Müller, M.R., Grünebach, F., Nencioni, A., Brossart, P., Transfection of dendritic cells with RNA induces CD4-and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes (2003) J Immunol, 170 (12), pp. 5892-5896 Nair, S., Boczkowski, D., Moeller, B., Dewhirst, M., Vieweg, J., Gilboa, E., Synergy between tumor immunotherapy and antiangiogenic therapy (2003) Blood, 102 (3), pp. 964-971 Siegel, S., Wagner, A., Kabelitz, D., Marget, M., Coggin, J., Barsoum, A., Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies (2003) Blood, 102 (13), pp. 4416-4423 van Meirvenne, S., Straetman, L., Heirman, C., Dullaers, M., de Greef, C., van Tendeloo, V., Efficient genetic modification of murine dendritic cells by electroporation with mRNA (2002) Cancer Gene Ther, 9 (9), pp. 787-797 Zhao, Y., Boczkowski, D., Nair, S.K., Gilboa, E., Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity (2003) Blood, 102 (12), pp. 4137-4142 Tavernier, G., Andries, O., Demeester, J., Sanders, N.N., de Smedt, S.C., Rejman, J., mRNA as gene therapeutic: How to control protein expression (2011) J Controlled Release, 150 (3), pp. 238-247 Xu, Y., Szoka, F.C., Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfection (1996) Biochemistry (Mosc), 35 (18), pp. 5616-5623 Bringmann, A., Held, S.A.E., Heine, A., Brossart, P., RNA vaccines in cancer treatment (2010) J Biomed Biotechnol, 2010, pp. 1-12 de la Torre, L.G., Rosada, R.S., Trombone, A.P.F., Frantz, F.G., Coelho-Castelo, A.A.M., Silva, C.L., The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes (2009) Colloids Surf B Biointerfaces, 73 (2), pp. 175-184 Rosada, R.S., de la Torre, L.G., Frantz, F.G., Trombone, A.P., Zarate-Blades, C.R., Fonseca, D.M., Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes (2008) BMC Immunol, 9, p. 38 Balbino, T.A., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., de la Torre, L.G., Correlation of the Physicochemical and Structural Properties of pDNA/Cationic Liposome Complexes with Their in vitro Transfection (2012) Langmuir, 28 (31), pp. 11535-11545 Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Lipofection: A highly efficient, lipid-mediated DNAtransfection procedure (1987) Proc Natl Acad Sci USA, 84 (21), pp. 7413-7417 Chou, L.Y., Ming, K., Chan, W.C., Strategies for the intracellular delivery of nanoparticles (2011) Chem Soc Rev, 40 (1), pp. 233-245 Zhou, X., Huang, L., DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action (1994) Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1189 (2), pp. 195-203 Maitani, Y., Igarashi, S., Sato, M., Hattori, Y., Cationic liposome (DCChol/ DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression (2007) Int J Pharm, 342 (1-2), pp. 33-39 Koltover, I., Salditt, T., Radler, J.O., Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery (1998) Sci, 281 (5373), pp. 78-81 Gadd, J.C., Kuyper, C.L., Fujimoto, B.S., Allen, R.W., Chiu, D.T., Sizing Subcellular Organelles and Nanoparticles Confined within Aqueous Droplets (2008) Anal Chem, 80 (9), pp. 3450-3457 Caracciolo, G., Caminiti, R., Digman, M.A., Gratton, E., Sanchez, S., Efficient escape from endosomes determines the superior efficiency of multicomponent lipoplexes (2009) J Phys Chem B, 113 (15), pp. 4995-4997 Akita, H., Kogure, K., Moriguchi, R., Nakamura, Y., Higashi, T., Nakamura, T., Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation (2010) J Controlled Release, 143 (3), pp. 311-317 Oliveira, S., van Rooy, I., Kranenburg, O., Storm, G., Schiffelers, R.M., Fusogenic peptides enhance endosomal escape improving siRNAinduced silencing of oncogenes (2007) Int J Pharm, 331 (2), pp. 211-214 Roy, M.J., Wu, M.S., Barr, L.J., Fuller, J.T., Tussey, L.G., Speller, S., Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine (2000) Vaccine, 19 (7-8), pp. 764-778 Ulmer, J.B., Deck, R.R., Dewitt, C.M., Donnelly, J.J., Liu, M.A., Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: Antigen presentation by nonmuscle cells (1996) Immunology, 89 (1), pp. 59-67 Cheng, W.F., Hung, C.F., Chai, C.Y., Hsu, K.F., He, L., Ling, M., Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen (2001) J Clin Invest, 108 (5), pp. 669-678 Leachman, S.A., Tigelaar, R.E., Shlyankevich, M., Slade, M.D., Irwin, M., Chang, E., Granulocyte-macrophage colony-stimulating factor priming plus papillomavirus E6 DNA vaccination: Effects on papilloma formation and regression in the cottontail rabbit papillomavirus-rabbit model (2000) J Virol, 74 (18), pp. 8700-8708 Roy, K., Mao, H.-Q., Huang, S.K., Leong, K.W., Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy (1999) Nat Med, 5 (4), pp. 387-391 Hattori, Y., Kawakami, S., Nakamura, K., Yamashita, F., Hashida, M., Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route (2006) J Pharmacol Exp Ther, 318 (2), pp. 828-834 Ni, H., Capodici, J., Cannon, G., Communi, D., Boeynaems, J.-M., Karikó, K., Extracellular mRNA induces dendritic cell activation by stimulating tumor necrosis factor-alpha secretion and signaling through a nucleotide receptor (2002) J Biol Chem, 277 (15), pp. 12689-12696 Scheel, B., Aulwurm, S., Probst, J., Stitz, L., Hoerr, I., Rammensee, H.-G., Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA (2006) Eur J Immunol, 36 (10), pp. 2807-2816 Rejman, J., Tavernier, G., Bavarsad, N., Demeester, J., de Smedt, S.C., mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers (2010) J Controlled Release, 147 (3), pp. 385-391 Perche, F., Benvegnu, T., Berchel, M., Lebegue, L., Pichon, C., Jaffrès, P.A., Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA (2011) Nanomedicine: Nanotechnology, Biology, and Medicine, 7 (4), pp. 445-453 Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nat Nano, 2 (12), pp. 751-760 Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P., Cancer therapy based on nanomaterials and nanocarrier systems (2010) J Nanomaterials, 2010, pp. 1-9 Danhier, F., Feron, O., Preat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anticancer drug delivery (2010) J Control Release, 148 (2), pp. 135-146