dc.creatorVitor M.T.
dc.creatorBergami-Santos P.C.
dc.creatorBarbuto J.A.M.
dc.creatorde la Torre L.G.
dc.date2013
dc.date2015-06-25T19:10:12Z
dc.date2015-11-26T15:07:54Z
dc.date2015-06-25T19:10:12Z
dc.date2015-11-26T15:07:54Z
dc.date.accessioned2018-03-28T22:18:21Z
dc.date.available2018-03-28T22:18:21Z
dc.identifier
dc.identifierRecent Patents On Drug Delivery And Formulation. , v. 7, n. 2, p. 99 - 110, 2013.
dc.identifier18722113
dc.identifier10.2174/18722113113079990010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84880172424&partnerID=40&md5=46601ba4873a17cbdf82af8ed14d7094
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88463
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88463
dc.identifier2-s2.0-84880172424
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257571
dc.descriptionThis review presents the current status in the use of liposomes as non-viral vector for nucleic acid delivery in cancer immunotherapy. Currently, cancer treatment uses surgery, radiotherapy and/or chemotherapy. The search for new strategies to improve the efficiency of conventional treatments is a challenge, and biological therapy has emerged as a promising technique. Immunotherapy is a branch of biological therapy that uses the body's immune system to detect and destroy cancer cells. One immunotherapy approach is the activation of T lymphocytes from cancer patients by dendritic cells (DCs) loaded with tumor antigens. Among different antigens, mRNA coding the tumor antigens is advantageous due to its capability to be amplified from small amounts of tumor tissue, its safety because it is easily degraded without integrating into the host genome, and it does not need to cross the nuclear barrier to exert its biological activity. Nanotechnology is an approach to deliver tumor antigens into DCs. Specially; we review the use of nanoliposomes in the field of cancer therapy because cationic liposomes can be used as non-viral vectors for mRNA delivery. Aside from the promise of liposomes, the development of scalable processes and facilities to the use this individualized therapy is still a challenge. Thus, we also present the recent techniques used for liposome production. In this context, the integration between technological knowledge in the production of cationic liposomes and immunotherapy using mRNA may contribute to the development of new strategies for cancer therapy. © 2013 Bentham Science Publishers.
dc.description7
dc.description2
dc.description99
dc.description110
dc.descriptionMisra, R., Acharya, S., Sahoo, S.K., Cancer nanotechnology: Application of nanotechnology in cancer therapy (2010) Drug Discov Today, 15 (19-20), pp. 842-850
dc.descriptionSusa, M., Milane, L., Amiji, M., Hornicek, F., Duan, Z., Nanoparticles: A promising modality in the treatment of sarcomas (2011) Pharm Res, 28 (2), pp. 260-272
dc.descriptionBangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids (1965) J Mol Biol, 13 (1), pp. 238-252
dc.descriptionSheng, W.Y., Huang, L., Cancer immunotherapy and nanomedicine (2011) Pharm Res, 28 (2), pp. 200-214
dc.descriptionSullenger, B.A., Gilboa, E., Emerging clinical applications of RNA (2002) Nature, 418 (6894), pp. 252-258
dc.descriptionTrevisan, J.E., Cavalcanti, L.P., Oliveira, C.L.P., de la Torre, L.G., Santana, M.H.A., Technological aspects of scalable processes for the production of functional liposomes for gene therapy (2011) Non-Viral Gene Therapy. In Tech, pp. 267-292. , In: Yuan X-b, Eds
dc.descriptionWood, G.W., (2002) Composition and Method of Cancer Antigen Immunotherapy, , US6406699
dc.descriptionRubiolo, C., (2011) Dendritic Cells, , US20110097346
dc.descriptionMaeda, H., Greish, K., (2005) Antitumor Agent and Process For Producing the Same, , US20050208136
dc.descriptionTomalia, D.A., Pulgam, V.R., Swanson, D.R., Huang, B., (2011) Janus Dendrimers and Dendrons, , US7977452
dc.descriptionKlimash, J.W., Brothers, H.M., Swanson, D.R., Yin, R., Spindler, R., Tomalia, D.A., Hsu, Y., Cheng, R.C., (2000) Disulfidecontaining Dendritic Polymers, , US6020457
dc.descriptionKim, J.U., Choi, H.Y., (2010) X-ray System For Dental Diagnosis and Oral Cancer Therapy Based On Nano-material and Method Thereof, , US7771117
dc.descriptionHirsch, A., Sagman, U., Wilson, S.R., Rosenblum, M.G., Wilson, L.J., (2008) Use of Carbon Nanotube For Drug Delivery, , US20080193490
dc.descriptionCarol, M.P., Heanue, J.A., (2009) Delivery System For Radiation Therapy, , US20090154646
dc.descriptionZhukov, T.A., Ostapenko, S., Sutphen, R., Lancaster, J., Sellers, T.A., Zhang, J.Z., (2006) Luminescence Characterization of Quantum Dots Conjugated With Biomarkers For Early Cancer Detection, , US20060003465
dc.descriptionBao, G., Nie, S., Nitin, N., la Conte, L., (2005) Multifunctional Magnetic Nanoparticle Probes For Intracellular Molecular Imaging and Monitoring, , US20050130167
dc.descriptionHolland, J.W., Madden, T.D., Cullis, P.R., (1999) Bilayer Stabilizing Components and Their Use In Forming Programmable Fusogenic Liposomes, , US5885613
dc.descriptionDuzgunes, N., Simoes, S., Slepushkin, V., de Lima, M.C.P., (2001) Nonligand Polypeptide and Liposome Complexes As Intracellular Delivery Vehicles, , US6245427
dc.descriptionChancellor, M.B., Fraser, M.O., Chuang, Y.-C., de Groat, W.C., Huang, L., Yoshimura, N., (2006) Application of Lipid Vehicles and Use For Drug Delivery, , US7063860
dc.descriptionRahman, A., (1990) Liposome-encapsulated Vinca Alkaloids and Their Use In Combatting Tumors, , US4952408
dc.descriptionGraham, R., Barbisin, M., (2006) Cationic Liposomes and Methods of Use, , US20060159738
dc.descriptionMezei, M., Nugent, F.J., (1984) Method of Encapsulating Biologically Active Materials In Multilamellar Lipid Vesicles (MLV), , US4485054
dc.descriptionKung, V.T., Canova-Davis, E., (1986) Liposome Immunoassay Reagent and Method, , US4622294
dc.descriptionTournier, H., Schneider, M., Guillot, C., (1999) Liposomes With Enhanced Entrapment Capacity and Their Use In Imaging, , US5980937
dc.descriptionHo, J.-A., Lin, Y.-C., (2011) Device For Preparation of Liposomes and Method Thereof, , US20110163468
dc.descriptionBarenholz, Y., Gabizon, A., (1990) Liposome/doxorubicin Composition and Method, , US4898735
dc.descriptionRahman, A., (2002) Method of Administering Liposomal Encapsulated Taxane, , US6461637
dc.descriptionRahman, A., Rafaeloff, R., Husain, S.R., (1995) Liposome Encapsulated Taxol and A Method of Using the Same, , US5424073
dc.descriptionIga, K., Hamaguchi, N., Ogawa, Y., (1991) Liposome Composition and Production Thereof, , US5000959
dc.descriptionEsuvaranathan, K., Mahendran, R., Lawrencia, C., (2010) Methods and Compositions For Delivery of Pharmaceutical Agents, , US7709457
dc.descriptionSantana, M.H.A., Rosada, R.S., Castelo, A.A.M.C., Silva, C.L., de la Torre, L.G., (2009) Ternary Liposomal Composition Containing a Polynucleotide, , WO2009073941
dc.descriptionStewart, B.W., Kleihues, P., (2003) World Cancer Report, , IARC Press: Lyon, France
dc.description(2011) Are the number of cancer cases increasing or decreasing in the world?, , http://www.who.int/features/qa/15/en/index.html, (WHO) WHO Available at, Accessed on: July 16
dc.descriptionMorgan, G., Ward, R., Barton, M., The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies (2004) Clin Oncol, 16 (8), pp. 549-560
dc.descriptionPastor, F., Kolonias, D., Giangrande, P.H., Gilboa, E., Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay (2010) Nature, 465 (7295), pp. 227-230
dc.descriptionFolkman, J., Tumor angiogenesis: Therapeutic implications (1971) N Engl J Med, 285 (21), pp. 1182-1186
dc.descriptionPang, R.W., Poon, R.T., Clinical implications of angiogenesis in cancers (2006) Vasc Health Risk Manag, 2 (2), pp. 97-108
dc.descriptionBertino, J.R., Hait, W., Princípios do tratamento do câncer (2005) Cecil, Tratado De Medicina Interna. Rio De Janeiro, pp. 1316-1330. , In: Ausiello D, Goldman L, Eds., Brazil: Elsevier
dc.description(2011) Biological Therapy, , http://www.cancer.gov/cancertopics/treatment/biologicaltherapy, (NCI) NCI, Available at, Accessed on: August 28
dc.descriptionHanahan, D., Weinberg, R.A., Hallmarks of Cancer: The Next Generation (2011) Cell, 144 (5), pp. 646-674
dc.descriptionColey, W.B., The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus) (1910) Proc R Soc Med, 3, pp. 1-48
dc.description(2007) Understanding the Immune System - How it Works, pp. 1-54. , National Institute of Allergy and Infectious Diseases, U.S. Departament of Healthy and Human Services National Institutes of Health, Eds. USA: NIH Publication
dc.descriptionPrestwich, R.J., Errington, F., Hatfield, P., Merrick, A.E., Ilett, E.J., Selby, P.J., The immune system - is it relevant to cancer development, progression and treatment? (2008) Clin Oncol, 20 (2), pp. 101-112
dc.descriptionPulendran, B., Banchereau, J., Maraskovsky, E., Maliszewski, C., Modulating the immune response with dendritic cells and their growth factors (2001) Trends Immunol, 22 (1), pp. 41-47
dc.descriptionMarkovic, S.N., Celis, E., Antibodies and vaccines as novel cancer therapeutics (2006) Novel Anticancer Agents, pp. 207-221. , In: Alex AA, John KB, Eds., Burlington: Academic Press
dc.descriptionScanlan, M.J., Gure, A.O., Jungbluth, A.A., Old, L.J., Chen, Y.-T., Cancer/ testis antigens: An expanding family of targets for cancer immunotherapy (2002) Immunol Rev, 188 (1), pp. 22-32
dc.descriptionDunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D., Cancer immunoediting: From immunosurveillance to tumor escape (2002) Nat Immunol, 3 (11), pp. 991-998
dc.descriptionSteinman, R.M., Dendritic cells: Understanding immunogenicity (2007) Eur J Immunol, 37 (S1), pp. S53-S60
dc.descriptionBanchereau, J., Steinman, R.M., Dendritic cells and the control of immunity (1998) Nature, 392 (6673), pp. 245-252
dc.descriptionBaleeiro, R.B., Anselmo, L.B., Soares, F.A., Pinto, C.A.L., Ramos, O., Gross, J.L., High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-α in lung cancer (2008) Ancer Immunol Immunother, 57 (9), pp. 1335-1345
dc.descriptionSallusto, F., Lanzavecchia, A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha (1994) J Exp Med, 179 (4), pp. 1109-1118
dc.descriptionBarbuto, J.A.M., Ensina, L.F.C., Neves, A.R., Bergami-Santos, P.C., Leite, K.R.M., Marques, R., Dendritic cell-tumor cell hybrid vaccination for metastatic cancer (2004) Cancer Immunol Immunother, 53 (12), pp. 1111-1118
dc.descriptionGilboa, E., Vieweg, J., Cancer immunotherapy with mRNAtransfected dendritic cells (2004) Immunol Rev, 199, pp. 251-263
dc.descriptionBanchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Immunobiology of dendritic cells (2000) Annu Rev Immunol, 18, pp. 767-811
dc.descriptionAshley, D.M., Faiola, B., Nair, S., Hale, L.P., Bigner, D.D., Gilboa, E., Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors (1997) J Exp Med, 186 (7), pp. 1177-1182
dc.descriptionBoczkowski, D., Nair, S.K., Nam, J.H., Lyerly, H.K., Gilboa, E., Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells (2000) Cancer Res, 60 (4), pp. 1028-1034
dc.descriptionBoczkowski, D., Nair, S.K., Snyder, D., Gilboa, E., Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo (1996) J Exp Med, 184 (2), pp. 465-472
dc.descriptionGranstein, R.D., Ding, W., Ozawa, H., Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA (2000) J Invest Dermatol, 114 (4), pp. 632-636
dc.descriptionKoido, S., Kashiwaba, M., Chen, D., Gendler, S., Kufe, D., Gong, J., Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA (2000) J Immunol, 165 (10), pp. 5713-5719
dc.descriptionNair, S.K., Heiser, A., Boczkowski, D., Majumdar, A., Naoe, M., Lebkowski, J.S., Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells (2000) Nat Med, 6 (9), pp. 1011-1017
dc.descriptionZhang, W., He, L., Yuan, Z., Xie, Z., Wang, J., Hamada, H., Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin (1999) Hum Gene Ther, 10 (7), pp. 1151-1161
dc.descriptionHeiser, A., Dahm, P., Yancey, D.R., Maurice, M.A., Boczkowski, D., Nair, S.K., Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro (2000) J Immunol, 164 (10), pp. 5508-5514
dc.descriptionHeiser, A., Maurice, M.A., Yancey, D.R., Coleman, D.M., Dahm, P., Vieweg, J., Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors (2001) Cancer Res, 61 (8), pp. 3388-3393
dc.descriptionHeiser, A., Maurice, M.A., Yancey, D.R., Wu, N.Z., Dahm, P., Pruitt, S.K., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA (2001) J Immunol, 166 (5), pp. 2953-2960
dc.descriptionNair, S.K., Boczkowski, D., Morse, M., Cumming, R.I., Lyerly, H.K., Gilboa, E., Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA (1998) Nat Biotech, 16 (4), pp. 364-369
dc.descriptionSæbøe-Larssen, S., Fossberg, E., Gaudernack, G., mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT) (2002) J Immunol Methods, 259 (1-2), pp. 191-203
dc.descriptionStrobel, I., Berchtold, S., Götze, A., Schulze, U., Schuler, G., Steinkasserer, A., Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes (2000) Gene Ther, 7 (23), pp. 2028-2035
dc.descriptionSu, Z., Peluso, M.V., Raffegerst, S.H., Schendel, D.J., Roskrow, M.A., The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease (2001) Eur J Immunol, 31 (3), pp. 947-958
dc.descriptionThornburg, C., Boczkowski, D., Gilboa, E., Nair, S.K., Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: Implications for cervical cancer immunotherapy (2000) J Immunother, 23 (4), pp. 412-418
dc.descriptionvan Tendeloo, V.F.I., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., van Broeckhoven, C., Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells (2001) Blood, 98 (1), pp. 49-56
dc.descriptionWeissman, D., Ni, H., Scales, D., Dude, A., Capodici, J., McGibney, K., HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response (2000) J Immunol, 165 (8), pp. 4710-4717
dc.descriptionHeiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Autologous dendritic cells transfected with prostatespecific antigen RNA stimulate CTL responses against metastatic prostate tumors (2002) J Clin Invest, 109 (3), pp. 409-417
dc.descriptionBawa, R., Bawa, S.R., Maebius, S.B., Flynn, T., Wei, C., Protecting new ideas and inventions in nanomedicine with patents (2005) Nanomed Nanotechnol Biol Med, 1 (2), pp. 150-158
dc.descriptionMoghimi, S.M., Hunter, A.C., Murray, J.C., Nanomedicine: Current status and future prospects (2005) FASEB Journal: Official Publication of the Federation of American Societies For Experimental Biology, 19 (3), pp. 311-330
dc.descriptionFerrari, M., Cancer nanotechnology: Opportunities and challenges (2005) Nat Rev Cancer, 5 (3), pp. 161-171
dc.descriptionFerrari, M., Nanovector therapeutics (2005) Curr Opin Chem Biol, 9 (4), pp. 343-346
dc.descriptionFredika, R., Mauro, F., Introduction and rationale for nanotechnology in cancer therapy (2006) Nanotechnology For Cancer Therapy, pp. 3-10. , In: Eds, CRC Press
dc.descriptionShigeru, K., Mitsuru, H., Yuriko, H., Pharmacokinetics of Nanocarrier-Mediated Drug and Gene Delivery (2006) Nanotechnology For Cancer Therapy, pp. 43-58. , In: Amiji MM, Eds., CRC Press
dc.descriptionFenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the bloodbrain barrier (1999) J Pharmacol Exp Ther, 291 (3), pp. 1017-1022
dc.descriptionFurumoto, K., Nagayama, S., Ogawara, K.-I., Takakura, Y., Hashida, M., Higaki, K., Hepatic uptake of negatively charged particles in rats: Possible involvement of serum proteins in recognition by scavenger receptor (2004) J Controlled Release, 97 (1), pp. 133-141
dc.descriptionOberdürster, G., Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London. Series A: Mathematical (2000) Physical and Engineering Sciences, 358 (1775), pp. 2719-2740
dc.descriptionOgawara, K.-I., Yoshida, M., Higaki, K., Toshikiro, K., Shiraishi, K., Nishikawa, M., Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution (1999) J Controlled Release, 59 (1), pp. 15-22
dc.descriptionOgawara, K.-I., Yoshida, M., Kubo, J.-I., Nishikawa, M., Takakura, Y., Hashida, M., Mechanisms of hepatic disposition of polystyrene microspheres in rats: Effects of serum depend on the sizes of microspheres (1999) J Controlled Release, 61 (3), pp. 241-250
dc.descriptionHamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel (2005) Br J Cancer, 92 (7), pp. 1240-1246
dc.descriptionDavis, M.E., Chen, Z., Shin, D.M., Nanoparticle therapeutics: An emerging treatment modality for cancer (2008) Nature Reviews Drug Discovery, 7, pp. 771-782
dc.descriptionBrigger, I., Dubernet, C., Couvreur, P., Nanoparticles in cancer therapy and diagnosis (2002) Adv Drug Deliv Rev, 54 (5), pp. 631-651
dc.descriptionRandall, M., Active Targeting Strategies in Cancer with a Focus on Potential Nanotechnology Applications (2006) Nanotechnology For Cancer Therapy, pp. 19-42. , In: Amiji MM, Eds., CRC Press
dc.descriptionDuncan, R., Nanomedicine gets clinical (2005) Mater Today, 8 (8 SUPPL.), pp. 16-17
dc.descriptionShimab, S.A.K., Anwar, S., Jain, P., Nano structure based drug delivery system: An approach to treat cancer (2012) Int J Drug Develop Res, 4 (2), pp. 394-407
dc.descriptionAntunes, F.E., Marques, E.F., Miguel, M.G., Lindman, B., Polymervesicle association (2009) Adv Colloid Interface Sci, 147-148, pp. 18-35
dc.descriptionFilipe, E.J.M., Quando as moléculas se auto-organizam: Micelas e outras estruturas supremoleculares (1996) Revista De Cultura Científica, 18, pp. 25-38
dc.descriptionPark, J.W., Benz, C.C., Martin, F.J., Future directions of liposome-and immunoliposome-based cancer therapeutics (2004) Semin Oncol, 31 (13 SUPPL.), pp. 196-205
dc.descriptionEvans, D.F., Wennerström, H., (1999) The Colloidal Domain - Where Physics, Chemistry, Biology, and Technology Meet, , 2nd ed. Wiley-vch: USA
dc.descriptionIsraelachvili, J.N., (1992) Intermolecular and Surface Forces, , 2nd ed. Academic Press: California, USA
dc.descriptionLorenz, R.M., Edgar, J.S., Jeffries, G.D.M., Zhao, Y., McGloin, D., Chiu, D.T., Vortex-trap-induced fusion of femtoliter-volume aqueous droplets (2006) Anal Chem, 79 (1), pp. 224-228
dc.descriptionYagi, K., (1986) Medical Application of Liposomes, , Japan Scientific Societies Press
dc.descriptionHiemenz, P.C., Rajagopalan, R., (1997) Principles of Colloid and Surface Chemistry, , third edition, revised and expanded. Taylor & Francis
dc.descriptionLasic, D.D., (1993) Liposomes: From Physics to Applications, , Elsevier Science Publishers B.V.: Amsterdam
dc.descriptionPortney, N., Ozkan, M., Nano-oncology: Drug delivery, imaging, and sensing (2006) Anal Bioanal Chem, 384 (3), pp. 620-630
dc.descriptionForssen, E.A., Tokes, Z.A., Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity (1981) Proc Natl Acad Sci USA, 78 (3), pp. 1873-1877
dc.descriptionRobert, N.J., Vogel, C.L., Henderson, I.C., Sparano, J.A., Moore, M.R., Silverman, P., The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer (2004) Semin Oncol, 31 (13 SUPPL.), pp. 106-146
dc.descriptionStraubinger, R.M., Lopez, N.G., Debs, R.J., Hong, K., Papahadjopoulos, D., Liposome-based therapy of human ovarian cancer: Parameters determining potency of negatively charged and antibody-targeted liposomes (1988) Cancer Res, 48 (18), pp. 5237-5245
dc.descriptionCampbell, R.B., Balasubramanian, S.V., Straubinger, R.M., Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes (2001) J Pharm Sci, 90 (8), pp. 1091-1105
dc.descriptionRowinsky, E.K., Donehower, R.C., Paclitaxel (Taxol) (1995) N Engl J Med, 333 (1), pp. 1004-1014
dc.descriptionDye, D., Watkins, J., Suspected anaphylactic reaction to Cremophor EL (1980) Br Med J, 280 (6228), p. 1353
dc.descriptionLorenz, W., Reimann, H.J., Schmal, A., Dormann, P., Schwarz, B., Neugebauer, E., Histamine release in dogs by Cremophor E1 and its derivatives: Oxethylated oleic acid is the most effective constituent (1977) Agents Actions, 7 (1), pp. 63-67
dc.descriptionYoshizawa, Y., Kono, Y., Ogawara, K.-I., Kimura, T., Higaki, K., PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy (2011) Int J Pharm, 412 (1-2), pp. 132-141
dc.descriptionSapra, P., Allen, T.M., Ligand-targeted liposomal anticancer drugs (2003) Prog Lipid Res, 42 (5), pp. 439-462
dc.descriptionSorgi, F.L., Huang, L., Large scale production of DC-Chol cationic liposomes by microfluidization (1996) Int J Pharm, 144 (2), pp. 131-139
dc.descriptionNew, R.R.C., (1994) Liposomes: A Practical Approach, , IRL Press: Oxford University Press
dc.descriptionTorre, L.G., Carneiro, A.L., Rosada, R.S., Silva, C.L., Santana, M.H.A., A mathematical model describing the kinetic of cationic liposome production from dried lipid films adsorbed in a multitubular system (2007) Braz J Chem Eng, 24, pp. 477-486
dc.descriptionBarnadas-Rodriguez, R., Sabes, M., Factors involved in the production of liposomes with a high-pressure homogenizer (2001) Int J Pharm, 213 (1-2), pp. 175-186
dc.descriptionJahn, A., Vreeland, W.N., de Voe, D.L., Locascio, L.E., Gaitan, M., Microfluidic Directed Formation of Liposomes of Controlled Size (2007) Langmuir, 23 (11), pp. 6289-6293
dc.descriptionSu, Z., Dannull, J., Heiser, A., Yancey, D., Pruitt, S., Madden, J., Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor rna-transfected dendritic cells (2003) Cancer Res, 63 (9), pp. 2127-2133
dc.descriptionBonehill, A., van Nuffel, A.M., Corthals, J., Tuyaerts, S., Heirman, C., Francois, V., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients (2009) Clin Cancer Res, 15 (10), pp. 3366-3375
dc.descriptionGrunebach, F., Muller, M.R., Nencioni, A., Brossart, P., Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes (2003) Gene Ther, 10 (5), pp. 367-374
dc.descriptionMilazzo, C., Reichardt, V.L., Müller, M.R., Grünebach, F., Brossart, P., Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA (2003) Blood, 101 (3), pp. 977-982
dc.descriptionMüller, M.R., Grünebach, F., Nencioni, A., Brossart, P., Transfection of dendritic cells with RNA induces CD4-and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes (2003) J Immunol, 170 (12), pp. 5892-5896
dc.descriptionNair, S., Boczkowski, D., Moeller, B., Dewhirst, M., Vieweg, J., Gilboa, E., Synergy between tumor immunotherapy and antiangiogenic therapy (2003) Blood, 102 (3), pp. 964-971
dc.descriptionSiegel, S., Wagner, A., Kabelitz, D., Marget, M., Coggin, J., Barsoum, A., Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies (2003) Blood, 102 (13), pp. 4416-4423
dc.descriptionvan Meirvenne, S., Straetman, L., Heirman, C., Dullaers, M., de Greef, C., van Tendeloo, V., Efficient genetic modification of murine dendritic cells by electroporation with mRNA (2002) Cancer Gene Ther, 9 (9), pp. 787-797
dc.descriptionZhao, Y., Boczkowski, D., Nair, S.K., Gilboa, E., Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity (2003) Blood, 102 (12), pp. 4137-4142
dc.descriptionTavernier, G., Andries, O., Demeester, J., Sanders, N.N., de Smedt, S.C., Rejman, J., mRNA as gene therapeutic: How to control protein expression (2011) J Controlled Release, 150 (3), pp. 238-247
dc.descriptionXu, Y., Szoka, F.C., Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfection (1996) Biochemistry (Mosc), 35 (18), pp. 5616-5623
dc.descriptionBringmann, A., Held, S.A.E., Heine, A., Brossart, P., RNA vaccines in cancer treatment (2010) J Biomed Biotechnol, 2010, pp. 1-12
dc.descriptionde la Torre, L.G., Rosada, R.S., Trombone, A.P.F., Frantz, F.G., Coelho-Castelo, A.A.M., Silva, C.L., The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes (2009) Colloids Surf B Biointerfaces, 73 (2), pp. 175-184
dc.descriptionRosada, R.S., de la Torre, L.G., Frantz, F.G., Trombone, A.P., Zarate-Blades, C.R., Fonseca, D.M., Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes (2008) BMC Immunol, 9, p. 38
dc.descriptionBalbino, T.A., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., de la Torre, L.G., Correlation of the Physicochemical and Structural Properties of pDNA/Cationic Liposome Complexes with Their in vitro Transfection (2012) Langmuir, 28 (31), pp. 11535-11545
dc.descriptionFelgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Lipofection: A highly efficient, lipid-mediated DNAtransfection procedure (1987) Proc Natl Acad Sci USA, 84 (21), pp. 7413-7417
dc.descriptionChou, L.Y., Ming, K., Chan, W.C., Strategies for the intracellular delivery of nanoparticles (2011) Chem Soc Rev, 40 (1), pp. 233-245
dc.descriptionZhou, X., Huang, L., DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action (1994) Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1189 (2), pp. 195-203
dc.descriptionMaitani, Y., Igarashi, S., Sato, M., Hattori, Y., Cationic liposome (DCChol/ DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression (2007) Int J Pharm, 342 (1-2), pp. 33-39
dc.descriptionKoltover, I., Salditt, T., Radler, J.O., Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery (1998) Sci, 281 (5373), pp. 78-81
dc.descriptionGadd, J.C., Kuyper, C.L., Fujimoto, B.S., Allen, R.W., Chiu, D.T., Sizing Subcellular Organelles and Nanoparticles Confined within Aqueous Droplets (2008) Anal Chem, 80 (9), pp. 3450-3457
dc.descriptionCaracciolo, G., Caminiti, R., Digman, M.A., Gratton, E., Sanchez, S., Efficient escape from endosomes determines the superior efficiency of multicomponent lipoplexes (2009) J Phys Chem B, 113 (15), pp. 4995-4997
dc.descriptionAkita, H., Kogure, K., Moriguchi, R., Nakamura, Y., Higashi, T., Nakamura, T., Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation (2010) J Controlled Release, 143 (3), pp. 311-317
dc.descriptionOliveira, S., van Rooy, I., Kranenburg, O., Storm, G., Schiffelers, R.M., Fusogenic peptides enhance endosomal escape improving siRNAinduced silencing of oncogenes (2007) Int J Pharm, 331 (2), pp. 211-214
dc.descriptionRoy, M.J., Wu, M.S., Barr, L.J., Fuller, J.T., Tussey, L.G., Speller, S., Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine (2000) Vaccine, 19 (7-8), pp. 764-778
dc.descriptionUlmer, J.B., Deck, R.R., Dewitt, C.M., Donnelly, J.J., Liu, M.A., Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: Antigen presentation by nonmuscle cells (1996) Immunology, 89 (1), pp. 59-67
dc.descriptionCheng, W.F., Hung, C.F., Chai, C.Y., Hsu, K.F., He, L., Ling, M., Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen (2001) J Clin Invest, 108 (5), pp. 669-678
dc.descriptionLeachman, S.A., Tigelaar, R.E., Shlyankevich, M., Slade, M.D., Irwin, M., Chang, E., Granulocyte-macrophage colony-stimulating factor priming plus papillomavirus E6 DNA vaccination: Effects on papilloma formation and regression in the cottontail rabbit papillomavirus-rabbit model (2000) J Virol, 74 (18), pp. 8700-8708
dc.descriptionRoy, K., Mao, H.-Q., Huang, S.K., Leong, K.W., Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy (1999) Nat Med, 5 (4), pp. 387-391
dc.descriptionHattori, Y., Kawakami, S., Nakamura, K., Yamashita, F., Hashida, M., Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route (2006) J Pharmacol Exp Ther, 318 (2), pp. 828-834
dc.descriptionNi, H., Capodici, J., Cannon, G., Communi, D., Boeynaems, J.-M., Karikó, K., Extracellular mRNA induces dendritic cell activation by stimulating tumor necrosis factor-alpha secretion and signaling through a nucleotide receptor (2002) J Biol Chem, 277 (15), pp. 12689-12696
dc.descriptionScheel, B., Aulwurm, S., Probst, J., Stitz, L., Hoerr, I., Rammensee, H.-G., Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA (2006) Eur J Immunol, 36 (10), pp. 2807-2816
dc.descriptionRejman, J., Tavernier, G., Bavarsad, N., Demeester, J., de Smedt, S.C., mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers (2010) J Controlled Release, 147 (3), pp. 385-391
dc.descriptionPerche, F., Benvegnu, T., Berchel, M., Lebegue, L., Pichon, C., Jaffrès, P.A., Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA (2011) Nanomedicine: Nanotechnology, Biology, and Medicine, 7 (4), pp. 445-453
dc.descriptionPeer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nat Nano, 2 (12), pp. 751-760
dc.descriptionQiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P., Cancer therapy based on nanomaterials and nanocarrier systems (2010) J Nanomaterials, 2010, pp. 1-9
dc.descriptionDanhier, F., Feron, O., Preat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anticancer drug delivery (2010) J Control Release, 148 (2), pp. 135-146
dc.languageen
dc.publisher
dc.relationRecent Patents on Drug Delivery and Formulation
dc.rightsfechado
dc.sourceScopus
dc.titleCationic Liposomes As Non-viral Vector For Rna Delivery In Cancer Immunotherapy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución